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Roadmap

Take home ideas

Random assignment to treatment is random sampling from alternative
universes.
Be able to demonstrate that your design is complete for some purpose.
You have to have an estimand.
Analyze as you randomize.
Regression requires many more assumptions in order to lay claim to
estimating average causal effect.
Use the data to understand a model and not a model to understand
the data.
Start worrying after the first stage.
Think about spillovers at the design stage.
Seek generality.
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Lecture 1: What’s a cause?
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Lecture 1: What’s a cause?

Motivation

The intervention based motivation for understanding causal effects:

We want to know if a particular intervention (like aid) caused a
particular outcome (like reduced corruption).
We need to know:

1 What happened?
2 What would the outcome have been if there were no intervention?

The problem
1 . . . this is hard
2 . . . this is impossible

The problem in 2 is that you need to know what would have happened
if things were different. You need information on a counterfactual
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Lecture 1: What’s a cause? The Potential Outcomes Framework

The Potential Outcomes Framework
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Potential Outcomes

For each unit we assume that there are two post-treatment outcomes:
Yi (1) and Yi (0).
eg Y (1) is the outcome that would obtain if the unit received the
treatment.
The causal effect of Treatment (relative to Control) is:

τi = Yi (1)− Yi (0)

Note:
the causal effect is defined at the individual level.
there is no “data generating process” or functional form
the causal effect is defined relative to something else and so a
counterfactual must be conceivable (did Germany cause the second
world war?)
are there any substantive assumptions made here so far?
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Potential Outcomes

Now that we have a concept of causal effects available, let’s answer two
questions:

If for a given unit A causes B and B causes C , does that mean that A
causes C?
A boulder is flying down a mountain. You duck. This saves your life.
So the boulder caused the ducking and the ducking caused you to survive. So:
did the boulder cause you to survive?
Say A causes B — does that mean that there is a spatiotemporally
continuous sequence of causal intermediates?
Person A is planning some action Y; Person B sets out to stop them; person
X intervenes and prevents person B from stopping person A. In this case
Person A may complete their action, producing Y, without any knowledge
that B and X even exist; in particular B and X need not be anywhere close to
the action. So: did X cause Y ?
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Potential Outcomes

Now that we have a concept of causal effects available, let’s answer two
questions:

If for a given unit A causes B and B causes C , does that mean that A
causes C?
A boulder is flying down a mountain. You duck. This saves your life.
So the boulder caused the ducking and the ducking caused you to survive. So:
did the boulder cause you to survive?
Say A causes B — does that mean that there is a spatiotemporally
continuous sequence of causal intermediates?
Person A is planning some action Y; Person B sets out to stop them; person
X intervenes and prevents person B from stopping person A. In this case
Person A may complete their action, producing Y, without any knowledge
that B and X even exist; in particular B and X need not be anywhere close to
the action. So: did X cause Y ?
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: Contribution or attribution?
The counterfactual model is all about contribution, not attribution, except
in a very conditional sense.

Focus is on non-rival contributions
Not: what caused Y but what is the effect of X?
At most it provides a conditional account

Consider at outcome Y that might depend on two causes X1 and X2:

Y (0, 0) = 0

Y (1, 0) = 0

Y (0, 1) = 0

Y (1, 1) = 1

What caused Y ? Which cause was most important?
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: Contribution or attribution?

The counterfactual model is all about contribution, not attribution, except
in a very conditional sense.

Focus is on non-rival contributions
Not: what caused Y but what is the effect of X?
At most it provides a conditional account
This is problem for research programs that define “explanation” in
terms of figuring out the things that cause Y
Real difficulties conceptualizing what it means to say one cause is more
important than another cause. What does that mean?

Macartan Humphreys Lectures on causal inference and experimental methods 12 / 225



Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: Contribution or attribution?

The counterfactual model is all about contribution, not attribution, except
in a very conditional sense.

Focus is on non-rival contributions
Not: what caused Y but what is the effect of X?
At most it provides a conditional account
Erdogan’s increasing authoritarianism was the most important reason
for the attempted coup

More important than Turkey’s history of coups?
What does that mean?
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: No causation without manipulation

Some seemingly causal claims not admissible.
To get the definition off the ground, manipulation must be imaginable
(whether practical or not)
This renders thinking about effects of race and gender difficult
What does it mean to say that Aunt Pat voted for Brexit because she
is old?
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: No causation without manipulation

Some seemingly causal claims not admissible.
To get the definition of hte ground, manipulation must be imaginable
(whether practical or not)
This renders thinking about effects of race and gender difficult
Compare: What does it mean to say that Southern counties voted for
Brexit because they have many old people?
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: Causal claims are everywhere

Jack exploited Jill
It’s Jill’s fault that bucket fell
Jack is the most obstructionist member of Congress
Melania Trump stole from Michelle Obama’s speech
Activists need causal claims
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: What is actually seen?

We have talked about what’s potential, now what do we observe?
Say Zi indicates whether the unit i is assigned to treatment (Zi = 1) or
not (Zi = 0). It describes the treatment process. Then what we
observe is:

Yi = ZiYi (1) + (1− Zi )Yi (0)
Say Z is a random variable, then this is a sort of data generating
process. BUT the key things to note is

Yi is random but the randomness comes from Zi — the potential
outcomes, Yi (1), Yi (0) are fixed
Compare this to a regression approach in which Y is random but the
X ’s are fixed. eg:

Y ∼ N(βX , σ2) or Y = α + βX + ε, ε ∼ N(0, σ2)
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: The estimand and the rub

The causal effect of Treatment (relative to Control) is:

τi = Yi (1)− Yi (0)

This is what we want to estimate
BUT: We never can observe both Yi (1) and Yi (0)!
This is the fundamental problem (Holland)
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: The rub and the solution

Now for some magic. We really want to estimate:

τi = Yi (1)− Yi (0)

BUT: We never can observe both Yi (1) and Yi (0)
Say we lower our sights and try to estimate an average treatment effect:

τ = E (Y (1)− Y (0))

Now make use of the fact that

E (Y (1)− Y (0)) = E (Y (1))− E (Y (0))

In words: The average of differences is equal to the difference of averages;
here, the average treatment effect is equal to the difference in average
outcomes in treatment and control units.
The magic is that while we can’t hope to measure the differences; we are
good at measuring averages.
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: The rub and the solution

So we want to estimate E (Y (1)) and E (Y (0)).
We know that we can estimate averages of a quantity by taking the
average value from a random sample of units
To do this here we need to select a random sample of the Y (1) values
and a random sample of the Y (0) values, in other words, we randomly
assign subjects to treatment and control conditions.
When we do that we can in fact estimate:

EN(Yi (1)|Zi = 1)− EN(Yi (0)|Zi = 0)

which in expectation equals:

E (Yi (1)|Zi = 1 or Zi = 0)− E (Yi (0)|Zi = 1 or Zi = 0)

This highlights a deep connection between random assignment and
random sampling: when we do random assignment we are in fact
randomly sampling from different possible worlds.
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Causal claims: The rub and the solution

This provides a positive argument for causal inference from
randomization, rather than simply saying with randomization “everything
else is controlled for”

Let’s discuss:

Does the fact that an estimate is unbiased mean that it is right?
Can a randomization “fail”?
Where are the covariates?

Idea: random assignment is random sampling from potential worlds: to
understand anything you find, you need to know the sampling weights
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Potential outcomes: why randomization works
The average of the differences ≈ difference of averages
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Potential outcomes: heterogeneous effects
The average of the differences ≈ difference of averages

po.graph(N, Y0 - u/50, Y1+u/50, u,Z)
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Lecture 1: What’s a cause? The Potential Outcomes Framework

Potential outcomes: heterogeneous effects

Question: ≈ or =?
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Lecture 1: What’s a cause? Estimands and Estimators

Estimands and Estimators
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Lecture 1: What’s a cause? Estimands and Estimators

Estimands

The estimand is the thing you want to estimate
If you are estimating something you should be able to say what your
estimand is
You are responsible for your estimand. Your estimator will not tell you
what your estimand is
Just because you can calculate something does not mean that you
have an estimand
You can test a hypothesis without having an estimand
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Lecture 1: What’s a cause? Estimands and Estimators

Estimands: ATE, ATT, ATC, S-, P-, C-, ITT, LATE
Say that units are randomly assigned to treatment in different strata
(maybe just one); with fixed, though possibly different, shares assigned in
each stratum. Then the key estimands and estimators are:

τATE ≡ E (τi ) =
∑

x
wx∑

j
wj
τx τ̂ATE =

∑
x

wx∑
j

wj
τ̂x

τATT ≡ E (τi |Zi = 1) =
∑

x
px wx∑

j
pj wj

τx τ̂ATT =
∑

x
px wx∑

j
pj wj

τ̂x

τATC ≡ E (τi |Zi = 0) =
∑

x
(1−px )wx∑

j
(1−pj )wj

τx τ̂ATC =
∑

x
(1−px )wx∑

j
(1−pj )wj

τ̂x

where x indexes strata, px is the share of units in each stratum that is treated, and wx is the
size of a stratum.

Here:

ATE is Average Treatment Effect (all units)
ATT is Average Treatment Effect on the Treated
ATC is Average Treatment Effect on the Controls
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Lecture 1: What’s a cause? Estimands and Estimators

Estimands: ATE, ATT, ATC, S-, P-, C-, ITT, LATE}
In addition, each of these can be targets of interest:

for the population, in which case we refer to PATE, PATT, PATC and
P̂ATE , P̂ATT , P̂ATC
for a sample, in which case we refer to SATE, SATT, SATC, and
ŜATE , ŜATT , ŜATC

And for different subgroups,

given some value on a covariate, in which case we refer to CATE (conditional
average treatment effect)
for unobservable subgroups, we estimate LATE (Local Average Treatment Effect
(see below).

With non-compliance we might estimate ITT —the “intention to treat” effect

Skip to Fixer or Inference 1 or Big Ideas
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Lecture 1: What’s a cause? Estimands and Estimators

Exercise your potential outcomes 1

Consider the following potential outcomes table:

Unit Y(0) Y(1) τi
1 4 3
2 2 3
3 1 3
4 1 3
5 2 3

Questions for us: What are the unit level treatment effects? What is the
average treatment effect?
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Lecture 1: What’s a cause? Estimands and Estimators

Exercise your potential outcomes 2
Consider the following potential outcomes table:

In treatment? Y(0) Y(1)
Yes 2
No 3
No 1
Yes 3
Yes 3
No 2

Questions for us: Fill in the blanks.

Assuming a constant treatment effect of +1
Assuming a constant treatment effect of −1
Assuming an average treatment effect of 0

What is the actual treatment effect?
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Lecture 1: What’s a cause? Endogeneous subgroups

Endogeneous subgroups
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Lecture 1: What’s a cause? Endogeneous subgroups

Endogeneous Subgroups

Experiments often give rise to endogenous subgroups. The potential
outcomes framework can make it clear why this can cause problems.
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Lecture 1: What’s a cause? Endogeneous subgroups

Heterogeneous Effects with Endogeneous Categories

Problems arise in analyses of subgroups when the categories themselves
are affected by treatment
Example from our work:

You want to know if an intervention affects reporting on violence against
women
You measure the share of all subjects that experienced violence that file
reports
The problem is that which subjects experienced violence is itself a
function of treatment
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Lecture 1: What’s a cause? Endogeneous subgroups

Heterogeneous Effects with Endogeneous Categories

It is possible that in truth no one’s reporting behavior has changed, what
has changed is the propensity of people with different propensities to report
to experience violence:

Violence(Treatment) Reporting(Treatment, Violence)
V(0) V(1) R(0,1) R(1,1) R(0,0) R(1,0)

Type 1 (reporter) 1 1 1 1 0 0
Type 2 (non reporter) 1 0 0 0 0 0

Expected reporting given violence in control = Pr(Type 1)

Expected reporting given violence in treatment = 100%

Question: What is the actual effect of treatment on the propensity to
report violence?
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Lecture 1: What’s a cause? Endogeneous subgroups

Heterogeneous Effects with Endogeneous Categories

It is possible that in truth no one’s reporting behavior has changed, what
has changed is the propensity of people with different propensities to report
to experience violence:

Reporters Non reporters
Experience Violence Experience Violence
No Yes No Yes % Report

Control 25 25 25 25 25
25+25= 50%

Treatment 25 25 50 0 25
25+0=100%
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Lecture 1: What’s a cause? Endogeneous subgroups

Heterogeneous Effects with Endogeneous Categories

This problem can arise as easily in seemingly simple field experiments.
Example:

In one study we provided constituents with information about
performance of politicians
we told politicians in advance so that they could take action
we wanted to see whether voters punished poorly performing politicians
what’s the problem?
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Lecture 1: What’s a cause? Endogeneous subgroups

Heterogeneous Effects with Endogeneous Categories
Question for us:

Setting:

Quotas for women are randomly placed in a set of constituencies in year
1. All winners in these areas are women; in other areas only some are.
In year 2 these quotas are then lifted.

Questions Which problems face an endogenous subgroup issue?:

1 You want to estimate the likelihood that a woman will stand for
reelection in treatment versus control areas in year 2.

2 You want to estimate how much incumbents are more likely to be
reelected in treatment versus control areas in year 2.

3 You want to estimate how much treatment areas have more relected
incumbents in elections in year 2 compared to control.
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Lecture 1: What’s a cause? Endogeneous subgroups

Heterogeneous Effects with Endogeneous Categories

In such cases you can:

Examine the joint distribution of multiple outcomes
Condition on pretreatment features only
Engage in mediation analysis
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Lecture 1: What’s a cause? Endogeneous subgroups

Missing data can create an endogeneous subgroup problem

It is well known that missing data can undo the magic of random
assignment.
One seemingly promising approach is to match into pairs ex ante and
drop pairs together ex post.
Say potential outcomes looked like this (four units divided into two
pairs):

Table 1: Full profile of potential outcomes

Pair I I II II
Unit 1 2 3 4 Average
Y(0) 0 0 0 0
Y(1) -3 1 1 1
τ -3 1 1 1
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Lecture 1: What’s a cause? Endogeneous subgroups

Missing data

Say though that cases are likely to drop out of the sample if things go
badly (eg they get a negative score or die)
Then you might see no attrition in cases in which people that are likely
to drop out if treated do not get treated.
You might assume you have no problem (after all, no attrition).

Table 2: No missing data when the normal cases happens to be selected

Pair I I II II
Unit 1 2 3 4 Average
Y(0) 0 0 0
Y(1) 1 1 1
τ̂ 1
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Lecture 1: What’s a cause? Endogeneous subgroups

Missing data

But in cases in which you have attrition, dropping the pair doesn’t
necessarily help.
The problem is potential missingness still depends on potential
outcomes
The kicker is that the method can produce bias even if (in fact) there
is no attrition!

Table 3: Missing data when the vulnerable cases happens to be selected

Pair I I II II
Unit 1 2 3 4 Average
Y(0) [0] 0 0
Y(1) [-3] 1 1
τ̂ 1
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Lecture 1: What’s a cause? Endogeneous subgroups

Missing data

[Footnote: The right way to think about this is that bias is a property of
the strategy over possible realizations of data and not normally a property
of the estimator conditional on the data.]
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Lecture 1: What’s a cause? Endogeneous subgroups

Multistage games

Multistage games can also present an endogenous group problem since
collections of late stage players facing a given choice have been created by
early stage players.
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Lecture 1: What’s a cause? Endogeneous subgroups

Multistage games

Question: Does visibility alter the extent to which subjects follow norms
to punish antisocial behavior (and reward prosocial behavior)? Consider a
trust game in which we are interested in how information on receivers
affects their actions

Table 4: Return rates given investments under different conditions

% invested Average % returned
(average) ...when ...when

10% invested 50% invested
Treatment Masked information on respon-

dents
30% (avg) 20% 40%

Full information on respon-
dents

30% (avg) 0% 60%

What do we think? Does visibility make people react more to investments?
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Lecture 1: What’s a cause? Endogeneous subgroups

Multistage games

Imagine you could see all the potential outcomes, and they looked like \
this:

Table 5: Potential outcomes with (and without) identity protection

Responder’s return decision (given type) Avg.
Nice Nice Nice Mean Mean Mean
1 2 3 4 4 6

Offerer Invest 10%: 60% 60% 60% 0% 0% 0% 30%
behavior Invest 50%: 60% 60% 60% 0% 0% 0% 30%

Conclusion: Both the offer and the information condition are completely
irrelevant for all subjects. . .
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Lecture 1: What’s a cause? Endogeneous subgroups

Multistage games

Unfortunately you only see a sample of the potential outcomes, and that
looks like this:

Table 6: Outcomes when respondent is visible

Responder’s return decision (given type) Avg.
Nice Nice Nice Mean Mean Mean
1 2 3 4 4 6

Offerer Invest 10%: 0% 0% 0% 0%
behavior Invest 50%: 60% 60% 60% 60%

False Conclusion: When not protected, responders condition behavior
strongly on offers (because offerers can select on type accurately)
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Lecture 1: What’s a cause? Endogeneous subgroups

Multistage games

Unfortunately you only see a sample of the potential outcomes, and that
looks like this:

Table 7: Outcomes when respondent is not visible

Responder’s return decision (given type) Avg.
Nice Nice Nice Mean Mean Mean
1 2 3 4 4 6

Offerer Invest 10%: 60% 0% 0% 20%
behavior Invest 50%: 60% 60% 0% 40%

False Conclusion: When protected, responders condition behavior less
strongly on offers (because offerers can select on type less accurately)
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Lecture 1: What’s a cause? Endogeneous subgroups

Multistage games
What to do? Solutions?

1 Analysis could focus on the effect of treatment on respondent behavior, directly.

This would get the correct answer but to a different question [Does
information affect the share of contributions returned by subjects on
average? No]

2 Strategy method can sometimes help address the problem, but that is also (a)
changing the question and (b) putting demands on respondent imagination and
honesty

3 First mover action could be directly manipulated, but unless deception is used that
is also changing the question

4 First movers could be selected because they act in predictible ways (bordering on
deception?)

Idea: Proceed with extreme caution when estimating effects beyond the first stage.

Skip to Mediation or Big Ideas
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Lecture 1: What’s a cause? Endogeneous subgroups

Recap: Ten things you need to know about causal inference
1 A causal claim is a statement about what didn’t happen.
2 There is a fundamental problem of causal inference.
3 You can estimate average causal effects even if you cannot observe any

individual causal effects.
4 If you know that A causes B and that B causes C , this does not mean

that you know that A causes C .
5 The counterfactual model is all about contribution, not attribution.
6 X can cause Y even if there is no “causal path” connecting X and Y .
7 Correlation is not causation
8 X can cause Y even if X is not a necessary condition or a sufficient

condition for Y .
9 Estimating average causal effects does not require that treatment and

control groups are identical.
10 There is no causation without manipulation

http://egap.org/resources/guides/causality/
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Lecture 2: What’s an experiment?

Lecture 2: What’s an experiment?
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Lecture 2: What’s an experiment? Investigations

Investigations
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Lecture 2: What’s an experiment? Investigations

Experiments

Experiments are investigations in which an intervention, in all its
essential elements, is under the control of the investigator. (Cox &
Reid)
Two major types of control:

1 control over assignment to treatment – this is at the heart of many field
experiments

2 control over the treatment itself – this is at the heart of many lab
experiments

Main focus today is on 1 and on the question: how does control over
assignment to treatment allow you to make reasonable statements
about causal effects?
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Lecture 2: What’s an experiment? Investigations

Experiments
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Lecture 2: What’s an experiment? Research designs

Research designs
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Lecture 2: What’s an experiment? Research designs

Formalizing A Research Design

1 Causal Variables. Let D denote a collection of causal variables.
V(Dj) denotes the space of possible values for causal variable Dj in D.
a : D → 2D denotes the ancestors of variable Dj .

Three classes of variables:
Population (X ) with associated probability distribution pX
Manipulands (Z ) with associated probability distribution pZ
Outcome Variables (Y ): Let f j : ×Dk ∈a(Yj )V(Dk)→ V(Y j) denote the
potential outcomes function for variable Y j and f the collection of all
such functions.
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Lecture 2: What’s an experiment? Research designs

Formalizing A Research Design

The manipulands are a special class of variables.
For every Y j there is a manipuland Z j where V(Z j) is an augmentation
of V(Y j) that allows possible values idle (or “�”) for each unit.
f j satisfies:

1 compliance with controlled assignments: y j
i = z j

i when z j
i 6= idle.

2 manipuland exclusion: y j is independent of zk for all k 6= j conditional
on a(Y j) ∩ Y .

So: f j(Z j = z j , a(Y j)) = z j whenever z j
i 6= �. When z j

i = � then y j
i is

unconstrained by z j and is determined by a(Y j).
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Lecture 2: What’s an experiment? Research designs

Formalizing A Research Design

Note:

Our use of idle (or �) is similar to that in Pearl except that we define
variables for collections of units and allow some units to be assigned
and others not.
Z j = ~� is the case in which Y j is not directly manipulated in any
component and is determined by other ancestors of Y j

Z j = (0, 1,�) is a more complex quantity in which Y j is directly
manipulated for units 1 and 2, but not for unit 3.
It is still possible however that f j

3 (Z j = (0, 1,�)) 6= f j
3 (Z j = ~�)
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Lecture 2: What’s an experiment? Research designs

Formalizing A Research Design

1 Causal Variables
2 Data. Let pD denote a probability distribution over D induced by pZ

and pX .
A realization of the data is denoted d .
Let D denote the set of all possible data (the “superdata”).

3 Estimands Let τ(D, d , pZ ) denote an estimand and (τ) a collection of
such estimands.

An estimand is a summary of potential outcomes, (recorded in D), but
it may also depend on which units are sampled or assigned to different
conditions (recorded in d), and assignment strategies.
A design-independent estimand depends on D only

4 Summary statistic is a function of data and pZ , these might include
test statistics, p values and so on.

5 Estimator Let τ̂(d , pZ ) denote an summary statistic (and (τ̂) a
collection of such functions) that is associated with an estimand.
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Lecture 2: What’s an experiment? Research designs

Formalizing A Research Design

5 Strategy. Let Σ =< pZ , (τ̂) > denote a strategy
6 Design. Let the 4-tuple ∆ =< pX , f ,Σ, (τ) > denote a design, it

consists of beliefs, conjectures, a strategy, and goals.
7 A Diagnostic-Statistic, t(d ,∆), is a function of Data and the study

For example: the difference between τ̂ and τ or whether the p value
associated with τ̂ is less than 0.05.

8 A diagnosand, θ is a summary of the distribution of a diagnostic
statistic. (θ) denotes a collection of diagnosands

For example: bias, power.
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Lecture 2: What’s an experiment? Research designs

Formalizing A Complete Research Design

1 We can then say that a design is “θ-complete” if diagnosand θ is
calculable from the design.

2 We say that a design is HD-complete when the power, bias, and MSE
of the design with respect to estimand τ can be calculated.
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Lecture 2: What’s an experiment? Research designs

Two illustrations: As a DAG

Z 1

Z 2

Z 3 Z 4 Z 5 Z 6

call voter
don't call

idle

answer call
don't answer

idle

attitude shift
no shift

idle

voted
did not vote

idle

voted
did not vote
missing data

measure outcome
don't measure

idle

Y 1 Y 2

Y 3

Y 4 Y 6 Y 5

Y 7

Xu

Unobserved shocks
Xo

Measured pretreatment
variables

τ̂
Estimated Effect

Population (X)

Outcomes (Y)

actual
values

Manipulands (Z)

manipulated
values

Treatment

call voter
do not call

Compliance

answer call
do not answer Mediator

attitude shift
no attitude shift

Outcome

voted
did not vote

Measured Outcome

voted
did not vote
missing data

Case Selection

measure outcome
don't measure
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Lecture 2: What’s an experiment? Research designs

Two illustrations: Simple Case
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Lecture 2: What’s an experiment? Research designs

Things to note from this formalization

1 Blocks and clusters are part of a design, pZ , not part of the world (X )
There may be all sorts of dependencies in the generation of potential
outcomes but the blocks and clusters that are used for randomization
are decided by researchers.
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Lecture 2: What’s an experiment? Research designs

Things to note from this formalization

2 Estimands need to be expressed in terms of full assignments.
Otherwise it can, for example, be impossible to assess how biased the
estimate of an estimand is in the presence of spillovers.

We often write the ATE as Ei (yi (1)− yi (0)), but this estimand by
definition excludes spillovers.
Instead we define ATE as: Ei (yi (Z 1(i))− yi (Z 0)) where Z 1(i) denotes
the assignment in which only unit 1 is treated and all other units are in
control and Z 0 is the assignment in which all units are in control, i.e.
(~0).
More generally: model dependent estimands may make it difficult to
assess performance of estimators—avoid model dependency in formal
declaration
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Lecture 2: What’s an experiment? Research designs

Things to note from this formalization

3 Estimands should not be determined by estimators, though they may
be inspired by them.

Sometimes researchers choose an estimator (e.g. regression, IV) and
define the estimand in terms of whatever it is that the estimator “shoots”
at.
But the mapping from estimators to estimands is not onto; it is not even
a function. A single estimator may shoot at different estimands and a
different estimand can be estimated by different estimators (in fact, by
any estimator, though generally badly)
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Lecture 2: What’s an experiment? Research designs

Things to note from this formalization

3 Estimands should not be determined by estimators, though they may
be inspired by them.

How good an estimator is for an estimand depends on other features of
a design, such as assignment schemes
One can define estimands of the form “the expected b̂ that would be
returned from regression given fZ” or even “the average b̂ that would be
returned from averaging each unit’s potential outcomes on potential
assignments”
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Lecture 2: What’s an experiment? Research designs

Things to note from this formalization

4 Noncompliance is just a potential outcome
as are attrition, spillovers, and even data collection, and estimates, and
referee reports
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Lecture 2: What’s an experiment? Research designs

Clarity regarding distinct types of estimator and estimand

Simple ways to formalize important differences between classes of estimand
and classes of estimates:

a post-treatment estimand
a post-sampling estimand
a population-estimand
a design-independent estimand
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Designs in Code: DeclareDesign
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

DeclareDesign: The key idea

A design consists of six objects:

1 The population. The set of units about which inferences are sought.
2 The potential outcomes function. The outcomes that each unit

might exhibit depending on how the causal process being studied
changes the world.

3 The sampling strategy. The strategy used to select units to include
in the study sample.

4 The estimands. The specification of the things that we want to learn
about the world, described in terms of potential outcomes.

5 The assignment function. The manner in which units are assigned
to reveal one potential outcome or another.

6 The estimator function. The procedure for generating estimates of
quantities we want to learn about.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

DeclareDesign

Note:

For experimental research, several components are entirely within the
control of researchers (3, 4, 5, 6)
Some are not (1 and 2) though they still matter for assessing the
design.
For observational work, item 5 (the assignment function) is generally
not in the control of researchers, but even in observational research,
assumptions about the assignment processes are typically invoked at
least implicitly.
Characteristics of populations (1) as well as potential outcomes (2)
may be a matter of speculation.
Explicit statements of beliefs about these are needed however to
evaluate a design, in the same way as statements about effect sizes are
needed to conduct simple power analyses.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

DeclareDesign Workflow}

(1) (2) (3) (4) (5) (6) (7)
Design ↔ Diagnose → Register → Sample & → Implement → Measure → Report &

Assign Reconcile
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

How can we exactly characterize each step?

Through computer code
Our implementation: R package DeclareDesign (with Graeme Blair,
Jasper Cooper and Alex Coppock)
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Six “declarations” for each design element

library(DeclareDesign)

population <- declare_population()
pos <- declare_potential_outcomes()
sampling <- declare_sampling()
assignment <- declare_assignment()
estimand <- declare_estimand()
estimator <- declare_estimator(estimand = estimand)

my_design <- declare_design(population = population,
sampling = sampling,
potential_outcomes = pos,
assignment = assignment,
estimator = estimator

)
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Declare Design

population <- declare_population(
noise = "rnorm(n_)",
income_bracket = "sample(1:4, n_, replace = TRUE)",
size = 5000)

The declare_population function is extremely flexible and can be used
to rapidly generate complex dummy data structures.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 1: Design

potential_outcomes <- declare_potential_outcomes(
condition_names = c("control", "treatment"),
formula =

Y ~ .1 * (Z == "treatment") +
.1 * (Z == "treatment") * income_bracket +
noise)

Multiple potential outcomes can be defined, e.g. for compliance or attrition.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 1: Design

sampling <- declare_sampling(n = 100)

Flexible built in options for sampling, though arbitrary user functions can
also be employed.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 1: Design

assignment <- declare_assignment(
potential_outcomes = potential_outcomes,
block_variable_name = "income_bracket",
block_probabilities = rbind(c(.1, .9),

c(.3, .7),
c(.7, .3),
c(.6, .4)))

Flexible built in options for assignment, though arbitrary user functions can
also be employed.

Macartan Humphreys Lectures on causal inference and experimental methods 78 / 225



Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 1: Design

estimand_ATE <- declare_estimand(
estimand_text = "mean(Y_Z_treatment - Y_Z_control)",
potential_outcomes = potential_outcomes)

Estimands are functions of potential outcomes stored in superdata.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 1: Design

estimator_lsdv <- declare_estimator(
formula = Y ~ Z + factor(income_bracket),
model = lm,
estimates = get_regression_coefficient,
coefficient_name = "Ztreatment",
estimand = estimand_ATE,
labels = "LSDV")

Estimands are associated with estimators when estimators are declared.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 1: Design

This set of R objects formally characterizes the entire design.

my_design <- declare_design(
population = population,
potential_outcomes = potential_outcomes,
sampling = sampling,
assignment = assignment,
estimator = estimator_lsdv

)

Once done my_design is an object that can be posted and shared. It can
also be modified, interrogated, and used in many ways.
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 1: Design

For simple designs this can all be done in one step using a “quick design”
template which lets you declare a standard design type in one step.

another_design <- quick_design(template = simple_template,
N=20, n = 10)

Or designs may be modifications of existing designs.

another_design <- modify_design(my_design,
estimator = estimator_robust)
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Step 2: Use the design

Draw dummy data
Implement sampling and assignment
Implement analysis
Report and reconcile
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Use the design: Draw Data (Sample and Assign)
Once a design is declared it can be used and interrogated. For example the
design has sufficient information to create mock data. These can be used to
confirm design features and simulate analysis strategies. draw_data
functionality can also be used to sample and assign treatments.

mock_data <- draw_data(design = my_design)

Y_control Y_treat Z Y noise income_bracket

-0.642 -0.342 control -0.642 -0.642 2
1.670 1.970 treatment 1.970 1.670 2
1.816 2.116 treatment 2.116 1.816 2
-0.512 -0.312 treatment -0.312 -0.512 1
2.661 2.961 treatment 2.961 2.661 2
1.156 1.356 treatment 1.356 1.156 1
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Use the design: Implement Analysis

The design also contains the information needed to implement analysis on
either real or simulated data.

get_estimates(estimator = my_design$estimator,
data = mock_data)

estimate_label est se p ci_lower ci_upper df estimator_label estimand_label estimand_level

Ztreatment 0.26 0.24 0.27 -0.21 0.74 95 estimator_lsdv mean(Y_Z_treatment - Y_Z_control) population
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Use the design: Diagnose

Perhaps most importantly, with a design declared it can be diagnosed.

diagnose_design(my_design)

diagnosand_label diagnosand diagnosand_sd_boot

mean(estimand) 0.350 0.000
mean(estimate) 0.370 0.013
sd(estimate) 0.229 0.010
bias 0.020 0.013
RMSE 0.230 0.010
coverage 0.950 0.012
power 0.352 0.025
type S rate 0.058 0.014
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Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Iteration between steps 1 and 2 to improve the design

sampling_larger_sample <- declare_sampling(n = 500)

my_other_design <- modify_design(
design = my_design,
sampling = sampling_larger_sample)

diagnose_design(my_other_design)

diagnosand_label diagnosand diagnosand_sd_boot

mean(estimand) 0.350 0.000
mean(estimate) 0.386 0.007
sd(estimate) 0.107 0.005
bias 0.036 0.007
RMSE 0.113 0.005
coverage 0.935 0.016
power 0.962 0.012
type S rate 0.002 0.003Macartan Humphreys Lectures on causal inference and experimental methods 87 / 225



Lecture 2: What’s an experiment? Designs in Code: DeclareDesign

Group Work 1

Small group work on causal inference
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Lecture 3: How to Randomize

Lecture 3: How to Randomize
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Lecture 3: How to Randomize

Basic randomization

Top

Basic randomization is very simple. For example, say you want to
assign 5 of 10 units to treatment. Here is simple code:

1:10 %in% sample(1:10, 5)

[1] FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
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Lecture 3: How to Randomize

. . . should be replicable

In general you might want to set things up so that your randomization is
replicable. You can do this by setting a seed:

set.seed(20111112)
1:10 %in% sample(1:10, 5)

[1] TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE

set.seed(20111112)
1:10 %in% sample(1:10, 5)

[1] TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE

Macartan Humphreys Lectures on causal inference and experimental methods 91 / 225



Lecture 3: How to Randomize

Basic randomization

Even better is to set it up so that it can reproduce lots of possible draws
so that you can check the propensities for each unit.

set.seed(20111112)
P <- sapply(1:1000, function(i) 1:10 %in% sample(1:10, 5))
apply(P, 1, mean)

[1] 0.525 0.486 0.502 0.500 0.511 0.491 0.485 0.484 0.501 0.515

Here the P matrix gives 1000 possible ways of allocating 5 of 10 units to
treatment. We can then confirm that the average propensity is 0.5.

A huge advantage of this approach is that if you make a mess of the
random assignment; you can still generate the P matrix and use
that for all analyses!
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Lecture 3: How to Randomize

Do it in advance

Unless you need them to keep subjects at ease, leave your spinners and
your dice and your cards behind.
Especially when you have multiple or complex randomizations you are
generally much better doing it with a computer in advance

Figure 1: A survey dictionary with results from a complex randomization
presented in a simple way for enumerators
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Lecture 3: How to Randomize

Did the randomization “work”?

People often wonder: did randomization work?
Common practice is to implement a set of t-tests to see if there is balance
This makes no sense.

If you doubt whether it was implemented properly do an F test
If you worry about variance specify controls in advance as a function of relation
with outcomes (more on this later)
If you worry about conditional bias then look at substantive differences between
groups, not t–tests
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Lecture 3: How to Randomize Cluster Randomization

Cluster Randomization
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Lecture 3: How to Randomize Cluster Randomization

Cluster Randomization

Simply place units into groups (clusters) and then randomly assign the
groups to treatment and control.
All units in a given group get the same treatment

Note: clusters are part of your design, not part of the world.
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Lecture 3: How to Randomize Cluster Randomization

Cluster Randomization

Often used if intervention has to function at the cluster level or if outcome defined
at the cluster level.
Disadvantage: loss of statistical power
However: perfectly possible to assign some treatments at cluster level and then
other treatments at the individual level

Principle: (unless you are worried about spillovers) generally make clusters as small
as possible
Principle: Surprisngly, variability in cluster size makes analysis harder. (See analysis
section)
Be clear about whether you believe effects are operating at the cluster level or at
the individual level. This matters for power calculations.
Be clear about whether spillover effects operate only within clusters or also across
them. If within only you might be able to interpret treatment as the effect of being
in a treated cluster. . .
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Lecture 3: How to Randomize Cluster Randomization

Cluster Randomization: Block by cluster size
Surprisingly, if clusters are of different sizes the difference in means estimator is not
unbiased, even if all units are assigned to treatment with the same probability.
Here’s the intuition. Say there are two clusters each with homogeneous

treatment effects:

Cluster Size Y0 Y1
1 1000000 0 1
2 1 0 0

Then:

What is the true average treatment effect?

What do you expect to estimate from cluster random assignment?

The solution is to block by cluster size. For more see:
http://gking.harvard.edu/files/cluster.pdf
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Blocked assignments and other restricted randomizations
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Lecture 3: How to Randomize Blocked assignments and other restricted randomizations

Blocking
There are more or less efficient ways to randomize.

Randomization helps ensure good balance on all covariates (observed
and unobserved) in expectation.
But balance may not be so great in realization
Blocking can help ensure balance ex post on observables

Consider a case with four units and two strata. There are 6 possible
assignments of 2 units to treatment:

ID X Y(0) Y(1) R1 R2 R3 R4 R5 R6
1 1 0 1 1 1 1 0 0 0
2 1 0 1 1 0 0 1 1 0
3 2 1 2 0 1 0 1 0 1
4 2 1 2 0 0 1 0 1 1
τ̂ : 0 1 1 1 1 2

Even with a constant treatment effect and everything uniform within blocks,
there is variance in the estimation of τ̂ . This can be eliminated by excluding
R1 and R6.Macartan Humphreys Lectures on causal inference and experimental methods 100 / 225
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Blocking

Simple blocking in R (5 pairs):

sapply(1:5, function(i) rank(runif(2))==1)

1 2 3 4 5

FALSE TRUE FALSE TRUE FALSE
TRUE FALSE TRUE FALSE TRUE
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Of blocks and clusters
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Lecture 3: How to Randomize Blocked assignments and other restricted randomizations

Blocking

Blocking is a case of restricted randomization. Although each unit is
sampled with equal probability, the profiles of possible assignments are not.
You have to take account of this when doing analysis
There are many other approaches.

“Matched Pairs” are a particularly fine approach to blocking
You could also randomize and then replace the randomization if you
do not like the balance. This sounds tricky (and it is) but it is OK as
long as you understand the true lottery process you are employing and
incorporate that into analysis
It is even possible to block on covariates for which you don’t have
data ex ante, by using methods in which you allocate treatment over
time as a function of features of your sample (also tricky)
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Lecture 3: How to Randomize Blocked assignments and other restricted randomizations

Other types of restricted randomization

Really you can set whatever criterion you want for your set of treated units to
have (eg no treated unit beside another treated unit; at least 5 from the north,
10 from the south, guaranteed balance by some continuous variable etc)
You just have to be sure that you understand the random process that was
used and that you can use it in the analysis stage
But here be dragons

The more complex your design, the more complex your analysis.
General injunction (Senn 2004 “as ye randomize so shall ye analyze”)
In general you should make sure that a given randomization procedure
coupled with a given estimation procedure will produce an unbiased
estimate. DeclareDesign can help with this.
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Factorial Designs
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Lecture 3: How to Randomize Factorial Designs

Factorial Designs

Often when you set up an experiment you want to look at more than
one treatment.
Should you do this or not? How should you use your power?
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Lecture 3: How to Randomize Factorial Designs

Factorial Designs

Often when you set up an experiment you want to look at more than
one treatment.
Should you do this or not? How should you use your power?

T2 = 0 T2 = 1
T1 = 0 50% 0%
T1 = 1 50% 0%

T2 = 0 T2 = 1
T1 = 0 25% 25%
T1 = 1 25% 25%

T2 = 0 T2 = 1
T1 = 0 33.3% 33.3%
T1 = 1 33.3% 0%
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Lecture 3: How to Randomize Factorial Designs

Factorial Designs

Surprisingly adding multiple treatments does not eat into your power
(unless you are decomposing a complex treatment – then it can. Why?)
Especially when you use a fully crossed design like the middle one
above.
Fisher: “No aphorism is more frequently repeated in connection with
field trials, than that we must ask Nature few questions, or, ideally, one
question, at a time. The writer is convinced that this view is wholly
mistaken.”
However – adding multiple treatments does alter the interpretation of
your treatment effects. If T2 is an unusual treatment for example, then
half the T1 effect is measured for unusual situations.

Macartan Humphreys Lectures on causal inference and experimental methods 108 / 225



Lecture 3: How to Randomize Factorial Designs

Factorial Designs: In practice

In practice if you have a lot of treatments it can be hard to do full
factorial designs – there may be too many combinations.
In such cases people use fractional factorial designs, like the one
below (5 treatments but only 8 units!)

Variation T1 T2 T3 T4 T5
1 0 0 0 1 1
2 0 0 1 0 0
3 0 1 0 0 1
4 0 1 1 1 0
5 1 0 0 1 0
6 1 0 1 0 1
7 1 1 0 0 0
8 1 1 1 1 1

Then randomly assign units to rows. Note columns might also be
blocking covariates.
In R, look at library(survey); hadamard(7)
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Lecture 3: How to Randomize Factorial Designs

Factorial Designs: In practice

But be careful: you have to be comfortable with possibly not having
any simple counterfactual unit for any unit (invoke sparsity-of-effects
principle).

Unit T1 T2 T3 T4 T5
1 0 0 0 1 1
2 0 0 1 0 0
3 0 1 0 0 1
4 0 1 1 1 0
5 1 0 0 1 0
6 1 0 1 0 1
7 1 1 0 0 0
8 1 1 1 1 1

In R, look at library(survey); hadamard(7)
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External Validity: Can randomization strategies help?
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Lecture 3: How to Randomize External Validity: Can randomization strategies help?

Principle: Address external validity at the design stage

Anything to be done on randomization to address external validity concerns?

Note 1: There is little or nothing about field experiments that makes
the external validity problem greater for these than for other “sample
based” research
Note 2: Studies that use up the available universe (cross national
studies) actually have a distinct external validity problem
Two ways to think about external validity issues:

1 Are things likely to operate in other units like they operate in these
units? (even with the same intervention)

2 Are the processes in operation in this treatment likely to operate in other
treatments? (even in this population)
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Lecture 3: How to Randomize External Validity: Can randomization strategies help?

Principle: Address external validity at the design stage

Two ways to think about external validity issues:
1 Are things likely to operate in other units like they operate in these

units? (even with the same intervention) 2.Are the processes in
operation in this treatment likely to operate in other treatments? (even
in this population)

Two approaches for 1.
Try to sample cases and estimate population average treatment effects
Exploit internal variation: block on features that make the case unusal
and assess importance of these (eg is unit poor? assess how effects differ
in poor and wealthy components)

2 is harder and requires a sharp identification of context free primitives,
if there are such things.
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Power
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Lecture 3: How to Randomize Power

Randomization and power

Power is the probability that you will correctly reject an incorrect null.
For example if your null is that the average treatment effect is 0 and
you reject the null whenever you estimate a t-stat>1.96, then your
power is the probability that you willindeed estiamte a t-stat greater
than 1.96.
But to know that you have to speculate about some true data
generating process.
Question: Say you had a design in which you said: “I will reject the
null no matter what the data looks like.” What is your power?
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Lecture 3: How to Randomize Power

Randomization and power

So power can be silly. But it is normally understood in a framework in
which you reject the null on the basis of some p value and the p value
has the interpretation that under the null the data pattern you see (or
some more extreme pattern) would arise with probability p.
Many factors influence power. What are
Question: What are the most important factors that influence power?
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Lecture 3: How to Randomize Power

Randomization and power
1 The variance of outcomes in the treatment and control groups – the

lower the variance the greater the power
2 The number of observations you have in the treatment adn control

groups
These two are related and you can control them—you want the data to
be where it will be most effective. If the variance in the treatment and
control groups is the same then you should spread the data across these
groups (equal assignment to treatment); but otherwise, not
You can also control the variance of outcomes in your groups with your
assignment strategy (eg blocking)

Also:

3 The true effect size – the more different the true effect from the null
the easier it is to reject the null. You can control the true effect size
(dosage) and you can choose the null.

4 Your test statistic. This is generated normally by your estimation
strategy—some strategies are better than others for reducing variation.
For example using a highly prognostic covariate as a control could
improve your power. You can control this.

5 Measurement error—measurement error introduces greater variance.
You can control this.
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Lecture 3: How to Randomize Power

Randomization and power

If you have:

figured out your design—including the sample, estimation strategy, and
tests you will focus on
conjectures about the world

Then you can calculate power.
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Lecture 3: How to Randomize Power

Illustration of power analysis in DeclareDesign

DeclareDesign can act as a big power calculator but one in which you can
compare arbitrary aspects of the design.

Here this is done by declaring a sequence of designs and diagnosing
each.

ns <- seq(20, 100, 20)
designs <- lapply(ns, FUN = function(n)

quick_design(template = simple_template, n = n))
powers <- lapply(compare_designs2(design = designs),

get_stat, stat = "power")
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Lecture 3: How to Randomize Power

Illustration of power analysis in DeclareDesign

DeclareDesign can act as a big power calculator but one in which you can
compare arbitrary aspects of the design.

## Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and 'y' lengths differ
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Lecture 3: How to Randomize Power

But please look past power

But done this way you can see that you can query not just arbitrary features
of the design but also arbitrary diagnosands. Such as RMSE. frand_dis

ns <- seq(20, 100, 20)
designs <- lapply(ns, FUN = function(n)

quick_design(template = simple_template, n = n))
rmses <- lapply(compare_designs2(design = designs),

get_stat, stat = "RMSE")
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But please look past power

## Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and 'y' lengths differ
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Maintaining balance
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Lecture 3: How to Randomize Maintaining balance

Principle: Maintain Balance Everywhere

Obvious as it may seem, it is critical to ensure that no element of a
design is accidentally correlated with treatment
Principle is violated eg if:

Your design is complex: eg you want to see the effect of a political
endorsement but the treatment provides exposure both to the
endorsement and the more general fact that there is a campaign
You take more measurements of subjects in treatment than in control
Your delivery of treatment selects subpopulations of subjects (those with
phones?) in ways different to control populations
You use different survey teams in the treatment and control groups
You take measurements for treatment and control at different times
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Lecture 3: How to Randomize Maintaining balance

Recap: Ten things you need to know about randomization
1 Some ways are better than others
2 Block randomization: You can fix it so that treatment and control groups are

balanced
3 Factorial designs: You can randomize multiple treatments at the same time

without using up power
4 You can randomize whole clusters together (but the bigger your clusters, the

weaker your power!)
5 You can randomize in a way that makes it easier to see if there are spillovers
6 Different units can be assigned to treatment with different probabilities
7 Restricted randomization: If you don’t like what you get you can start over
8 Write randomization code that lets you simulate many possible

randomizations
9 You can do randomization as you go along
10 Randomization can sometimes be an ethical way of assigning a treatment, but

sometimes it isn’t

http://egap.org/resources/guides/randomization/
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Complete, block, cluster, more
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

A design: Multilevel data

We will declare a design with hierarchical data and consider a range of
assignment strategies.
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Population

N_per_level <- c(students = 500,
classrooms = 50, schools = 25)

population <- declare_population(
student = list(

noise_student = declare_variable(type = "normal",
location_scale = c(mean = 0, sd = 2)
)),

classroom = list(
noise_classroom = declare_variable(type = "normal",

location_scale = c(mean = 0, sd = 2)
)),

school = list(),
size = N_per_level)
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Sampling and potential outcomes

potential_outcomes <- declare_potential_outcomes(
condition_names = c("control", "treatment"),
formula =

Y ~ 50 + 5*(Z == "treatment") +
2 * (classroom_ID/10 - 2) +
2 * (school_ID/10 - 2) +
noise_classroom +
noise_student)
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Samplng and Assignment

sampling <- declare_sampling(sampling = FALSE)

my_assignment <- function(data){
rbinom(n = nrow(data), size = 1, prob = 0.5)}

assignment <- declare_assignment(
custom_assignment_function = my_assignment,
potential_outcomes = potential_outcomes)
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Estimators and Estimands

estimand <- declare_estimand(
estimand_text = "mean(Y_Z_treatment - Y_Z_control)",
potential_outcomes = potential_outcomes)

estimator <- declare_estimator(Y ~ Z,
estimates = difference_in_means,
estimand = estimand,
labels = "ATE")
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Design declaration

Now, we are ready to declare our design and draw a sample data set.

design <- declare_design(
population = population,
sampling = sampling,
potential_outcomes = potential_outcomes,
assignment = assignment,
estimator = estimator)
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Sample data

Here are the first couple of rows and columns of the resulting data frame.

set.seed(1:5)
my_data <- draw_data(design)
kable(head(round(my_data,2))[,1:5])

student_ID classroom_ID school_ID noise_classroom noise_student

1 1 1 0.15 -1.25
2 1 1 0.15 0.37
3 1 1 0.15 -1.67
4 1 1 0.15 3.19
5 1 1 0.15 0.66
6 1 1 0.15 -1.64
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Sample data

Here is the distribution between treatment and control:

kable(t(as.matrix(table(my_data$Z))),
col.names = c("control", "treatment"))

control treatment

266 234
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Complete Random Assignment using the built in function

assignment_complete <- declare_assignment(m = 250,
potential_outcomes = potential_outcomes)

design_complete <- modify_design(design,
assignment = assignment_complete)
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Data from complete assignment

We can draw a new set of data and look at the number of subjects in the
treatment and control groups.

set.seed(1:5)
data_complete <- draw_data(design_complete)

kable(t(as.matrix(table(data_complete$Z))))

control treatment

250 250
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Plotted
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Block Random Assignment

The treatment and control group will in expectation contain the
same share of students in different classrooms.
But as seen in the plot below this does necessarily hold in realization
We make this more obvious by sorting the students by treatment status
with schools
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Declaring a blocked design

assignment_blocked <- declare_assignment(
potential_outcomes = potential_outcomes,
block_variable_name = "classroom_ID")

design_blocked <- modify_design(design,
assignment = assignment_blocked)

data_blocked <- draw_data(design_blocked)
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Illustration of blocked assignment

Note that subjets are sorted here after the assignment to make it easier
to see that in this case blocking ensures that exactly 5 students within
each classroom are assigned to treatment.
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Illustration of efficiency gains from blocking

set.seed(1:3)
diagnosis <- diagnose_design(design_complete,

population_draws = 1,
sample_draws = 1,
assignment_draws = 200)

diagnosis_blocked <- diagnose_design(design_blocked,
population_draws = 1,
sample_draws = 1,
assignment_draws = 200)
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Lecture 3b: Assignments with DeclareDesign Complete, block, cluster, more

Illustration of efficiency gains from blocking

rand_dist <- diagnosis$simulations$est
rand_dist_blocking <- diagnosis_blocked$simulations$est
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Lecture 4: Analysis Basic Analysis

Basic Analysis
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Lecture 4: Analysis Basic Analysis

ATE
Unbiased estimates of the (sample) average treatment effect can be
estimated (whether or not there imbalance on covariates) using:

ÂTE = 1
nT

∑
T

Yi −
1
nC

∑
C

Yi ,

Say different strata or blocks S had different assignment probabilities. Then
you could estimate:

ÂTE =
∑
S∈S

nS
n

(
1
nS1

∑
S∩T

yi −
1
nS0

∑
S∩C

yi

)
(1)

Which also corresponds to the difference in the weighted average of
treatment outcomes (with weights given by the inverse of the probability
that each unit is assigend to treatment) and control outcomes (with weights
given by the inverse of the probability that each unit is assigend to control).
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Lecture 4: Analysis Basic Analysis

ATE with IPW

The average difference in means estiamator is the same as what you
would get if you weighted inversely by shares of units in different
conditions inside blocks.
But inverse propensity weighting is a more general principle, which
can be used even if you do not have blocks.
The intuition for it comes stright from sampling weights — you
weight up in order to recover an unbiased estiamte of the potential
outcomes for all units, whether or not they are assigned to treatment.
With sampling weights however you can include units even if their
weight was 1. Why can you not include these units when doing inverse
propensity weighting?
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Lecture 4: Analysis Basic Analysis

Illustration: Estimating treatment effects with terrible
treatment assignments: Fixer
Say you made a mess and used a randomization that was correlated with some variable,
X . For example:

The randomization is done in a way that introduces a correlation between
Treatment Assignment and Potential Outcomes
Then possibly, even though there is no true causal effect we naively estimate a large
one — enormous bias
However since we know the assignment procedure we can fully correct for the bias
In the next example we do this using “inverse propensity score weighting.” This is
exactly analogous to standard survey weighting — since we selected different units
for treatment with different probabilities, we weight them differently to recover the
average outcome among treated units (same for control).

Then you can still use information on the assignment process to recover the right
estimates.
Skip to Estimation Big Ideas
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Lecture 4: Analysis Basic Analysis

Basic randomization: Fixer

Code to generate bad assignment but proper propensity weights:

n <- 200; reps <- 500; X <- runif(n) # Create a covariate (length n)
Y <- Y1 <- Y0 <- X # Say X completely determines Y!
Z <- function(i) rank(X+2*runif(n))>(n/2) # Bad randomization!
P <- sapply(1:reps, Z) # Lots of possible draws
p <- apply(P, 1, mean) # Recreate propensities!
pw <- (!P)*(1/(1-p)); pw[P]=(P*(1/p))[P] # Create inv prop weights

naive <- sapply(1:ncol(P),function(i) {
mean(Y[P[,i]])-mean(Y[!P[,i]])})

weightd <- sapply(1:ncol(P),function(i) { # IPW estimates
weighted.mean(Y[P[,i]], pw[,i][P[,i]])-
weighted.mean(Y[!P[,i]], pw[,i][!P[,i]])})
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Lecture 4: Analysis Basic Analysis

Basic randomization: Fixer
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Design Based Estimation of Variance
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Lecture 4: Analysis Design Based Estimation of Variance

Var(ATE)

Recall that the treatment effect is gotten by taking a sample of
outcomes under treatment and comparing them to a sample of
outcomes under control
Say that there is no “error”
Why would this procedure produce uncertainty?
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Lecture 4: Analysis Design Based Estimation of Variance

Var(ATE)

Why would this procedure produce uncertainty?
The uncertainty comes from being uncertain about the average
outcome under control from observations of the control units, and from
being uncertain about the average outcome under treatment from
obervation of the treated units
In other words, it comes from the variance in the treatment outcomes
and variance in the control outcomes (and not, for example, from
variance in the treatment effect)
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Lecture 4: Analysis Design Based Estimation of Variance

Var(ATE)
You can also estimate variance straight from the data. From Freedman Prop 1 (using
combinatorics!) we have:

V (ÂTE) =
1

n − 1

[ nC
nT

V (Y (1)) +
nT
nC

V (Y (0))
]

+ 2C (Y (1),Y (0))

Usefully rewritten as:

V (ÂTE) =
n

n − 1

[V (Y (1))
nT

+
V (Y (0))

nC

]
−

1
n − 1

[V (Y (1)) + V (Y (0))− 2C (Y (1),Y (0))]

. . . where V denotes variance and C covariance

Note:

We can use the sample estimates s2({Yi}i∈C ) and s2({Yi}i∈T ) for the first part.
But C(Y (1),Y (0)) cannot be estimated from data.
The “Neyman” estimator ignores the second part (and so is conservative).
Tip: for STATA users, use “, robust” (see Samii and Aronow: On equivalencies between
design-based and regression-based variance estimators for randomized experiments)
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Lecture 4: Analysis Design Based Estimation of Variance

ATE and Var(ATE)}

For the case with blocking, the conservative estimator is:

V (ÂTE ) =
∑
S∈S

(nS
n

)2
(
s2S1
nS1

+ s2S0
nS0

)

Skip to Covariate Adjustment or Big Ideas
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Lecture 4: Analysis Design Based Estimation of Variance

Illustration of Neyman Conservative Estimator

An illustration of how conservative the conservative estimator of variance
really is (numbers in plot are correlations between Y (1) and Y (0).

We confirm that:

1 the estimator is conservative
2 the estimator is more conservative for negative correlations between

Y (0) and Y (1) — eg if those cases that do particularly badly in
control are the ones that do particularly well in treatment %, and

3 with τ and V (Y (0)) fixed. high positive correlations are associated
with highest variance.
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Lecture 4: Analysis Design Based Estimation of Variance

Illustration of Neyman Conservative Estimator
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Lecture 4: Analysis Design Based Estimation of Variance

Illustration of Neyman Conservative Estimator}

τ ρ σ2Y (1) ∆ σ2τ σ̂2τ σ̂2
τ(Neyman)

1.00 -1.00 1.00 -0.04 0.00 -0.00 0.04
1.00 -0.67 1.00 -0.03 0.01 0.01 0.04
1.00 -0.33 1.00 -0.03 0.01 0.01 0.04
1.00 0.00 1.00 -0.02 0.02 0.02 0.04
1.00 0.33 1.00 -0.01 0.03 0.03 0.04
1.00 0.67 1.00 -0.01 0.03 0.03 0.04
1.00 1.00 1.00 0.00 0.04 0.04 0.04

Here ρ is the unobserved correlation between Y (1) and Y (0); and ∆ is the final term in the
sample variance equation that we cannot estimate.
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Lecture 4: Analysis Design Based Estimation of Variance

Tighter Bounds On Variance Estimate

The conservative variance comes from the fact that you do not know the
covariance between Y (1) and Y (0).

But as Aronow, Green, and Lee (2014) point out, you do know
something.
Intuitively, if you know that the variance of Y (1) is 0, then the
covariance also has to be zero.
This basic insight opens a way of calculating bounds on the variance of
the sample average treatment effect.
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Lecture 4: Analysis Design Based Estimation of Variance

Tighter Bounds On Variance Estimate

Example:

Take a million-observation dataset, with treatment randomly assigned
Assume Y (0) = 0 for everyone and Y (1) distributed normally with
mean 0 and standard deviation of 1000.
Note here the covariance of Y (1) and Y (0) is 0.
Note the true variance of the estimated sample average treatment
effect should be (approx) Var(Y (1))√

1000000 + Var(Y (0))√
1000000 = 1.

But using the Neyman estimator (or OLS!) we estimate (approx)
Var(Y (1))√
1000000/2

+ Var(Y (0))√
1000000/2

=
√
2.

But we can recover the truth knowing the covariance between Y (1)
and (0) is 0.
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Lecture 4: Analysis Design Based Estimation of Variance

Tighter Bounds On Variance Estimate: Code

sharp_var <- function(yt,yc,N=length(c(yt,yc)),upper=TRUE){
m <- length(yt); n <- m + length(yc)
V <- function(x,N) {

(N-1)/(N*(length(x)-1)) * sum((x - mean(x))^2)}
yt <- sort(yt)
if(upper) {yc <- sort(yc)

} else {yc <- sort(yc,decreasing=TRUE)}
p_i <- unique(sort(c(seq(0,n-m,1)/(n-m),seq(0,m,1)/m)))-

.Machine$double.eps^.5
p_i[1] <- .Machine$double.eps^.5
yti <- yt[ceiling(p_i*m)]; yci <- yc[ceiling(p_i*(n-m))]
p_i_minus <- c(NA,p_i[1: (length(p_i)-1)])
return(((N-m)/m * V(yt,N) + (N-(n-m))/(n-m)*V(yc,N) +

2*sum(((p_i-p_i_minus)*yti*yci)[2:length(p_i)]) -
2*mean(yt)*mean(yc))/(N-1))}
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Lecture 4: Analysis Design Based Estimation of Variance

Illustration

n <- 1000000
Y <- c(rep(0,n/2), 1000*rnorm(n/2))
X <- c(rep(0,n/2), rep(1, n/2))
ols <- round(coef(summary(lm(Y~X)))[2,],3)
kable(t(as.matrix(ols)))

Estimate Std. Error t value Pr(>|t|)

1.683 1.415 1.19 0.234

sharp <- round(c(sharp_var(Y[X==1], Y[X==0], upper = FALSE),
sharp_var(Y[X==1], Y[X==0], upper = TRUE)),3)

sharp

[1] 1.001 1.001
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Principle: Keep the reporting close to the design
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Lecture 4: Analysis Principle: Keep the reporting close to the design

Design based analysis

Report the analysis that is implied by the design.

T2
N Y All Diff

T1 N y00 y01 y0x d2|T1 = 0
(sd) (sd) (sd) (sd)

Y y10 y10 y1x d2|T1 = 1
(sd) (sd) (sd) (sd)

All y x0 y x1 y d2
(sd) (sd) (sd) (sd)

Diff d1|T2 = 0 d1|T2 = 1 d1 d1d2
(sd) (sd) (sd) (sd)

This is instantly recognizable from the design and returns all the benefits of the
factorial design including all main effects, conditional causal effects, interactions
and summary outcomes. It is much clearer and more informative than a regression
table.
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{Covariate and Regression Adjustment}
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Lecture 4: Analysis {Covariate and Regression Adjustment}

Covariate Adjustment

Even though randomization ensures no bias you may sometimes want
to “control” for covariates in order to improve efficiency (see the
discussion of blocking above).

Or you may have to take account of the fact that the assignment to
treatment is correlated with a covariate.
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Lecture 4: Analysis {Covariate and Regression Adjustment}

Covariate Adjustment

Consider for example this data.

You randomly pair offerers and receivers in a dictator game (in which
offerers decide how much of $1 to give to receivers)
Your population comes from two groups (80% Baganda and 20%
Banyankole) so in randomly assigning partners you are randomly
determining whether a partner is a coethnic or not

You find that in non coethnic pairings 35% is offered, in
coethnic pairings 48% is offered

Should you believe it?

Macartan Humphreys Lectures on causal inference and experimental methods 167 / 225



Lecture 4: Analysis {Covariate and Regression Adjustment}

Covariate Adjustment
Population: randomly matched Baganda (80% of pop) and Banyankole (20% of
pop)
You find: in non coethnic pairings 35% is offered, in coethnic pairings 48% is offered
But a closer look at the data reveals . . .

To: Baganda To: Banyankole
Offers by Baganda 64% 16%

Banyankole 16% 4%

Table 17: Number of Games

To: Baganda To: Banyankole
Offers by Baganda 50 50

Banyankole 20 20

Table 18: Average Offers

So that’s a problem
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Lecture 4: Analysis {Covariate and Regression Adjustment}

Covariate Adjustment
Control?

With such data you might be tempted to ‘control’ for the covariate
(here: ethnic group), using regression
But, perhaps surprisingly, it turns out that regression with covariates
does not estimate average treatment effects.
It does estimate an average of treatment effects, but specifically a
minimum variance estimator, not necessarily an estimator of your
estimand

Compare:

τ̂ATE =
∑

x
wx∑

j wj
τ̂x

τ̂OLS =
∑

x
wx px (1−px )∑

j wj pj (1−pj )
τ̂x

Instead the formula above for τ̂ATE is all you need to estimate ATE — at
least for discrete covariates.
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Lecture 4: Analysis {Covariate and Regression Adjustment}

OLS and its discontents: Illustration

Two strata with different potential outcomes and assignment probabilities.

Stratum 1 has Y (0) = Y (1) = 0 and 1 in 4 are treated
Stratum 2 has Y (1) = 14,Y (0) = 0 and 2 in 4 assigned to treatment

X <- 1*((1:8)>4) - .5
Z <- 1:8%in%c(1,7,8)
Y0 <- rnorm(8, sd = .01)
Y1 <- 14*(X==.5)
Y <- Z*Y1 + (1-Z)*Y0
tau <- Y1-Y0
p <- ave(Z, group_by = X)
ipw <- 1/(p*Z + (1-p)*(1-Z))
D <- data.frame(X, Y0, Y1, Y, tau, p, ipw)
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Lecture 4: Analysis {Covariate and Regression Adjustment}

OLS and its discontents: Illustration
Two strata with different potential outcomes and assignment probabilities.

Stratum 1 has Y (0) = Y (1) = 0 and 1 in 4 are treated
Stratum 2 has Y (1) = 14,Y (0) = 0 and 2 in 4 assigned to treatment

kable(round(D,3))

X Y0 Y1 Y tau p ipw

-0.5 0.018 0 0.000 -0.018 0.25 4.000
-0.5 0.003 0 0.003 -0.003 0.25 1.333
-0.5 0.000 0 0.000 0.000 0.25 1.333
-0.5 -0.008 0 -0.008 0.008 0.25 1.333
0.5 -0.021 14 -0.021 14.021 0.50 2.000
0.5 0.010 14 0.010 13.990 0.50 2.000
0.5 -0.002 14 14.000 14.002 0.50 2.000
0.5 0.011 14 14.000 13.989 0.50 2.000
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Lecture 4: Analysis {Covariate and Regression Adjustment}

OLS and its discontents
Two strata with different potential outcomes and assignment probabilities.

Stratum 1 has Y (0) = Y (1) = 0 and 1 in 4 are treated
Stratum 2 has Y (1) = 14,Y (0) = 0 and 2 in 4 assigned to treatment.
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Lecture 4: Analysis {Covariate and Regression Adjustment}

OLS and its discontents: Illustration

Two strata with different potential outcomes and assignment probabilities.

ols1 <- coef(summary(lm(Y~Z, data = D)))[2,]
ols2 <- coef(summary(lm(Y~Z+X, data = D)))[2,]
ipw1 <- coef(summary(lm(Y~Z, weight = ipw, data = D)))[2,]
ipw2 <- coef(summary(lm(Y~Z+X, weight = ipw, data = D)))[2,]
sat <- coef(summary(lm(Y~X*Z, data = D)))[3,]

OLS LSDV ipw1 ipw2 Saturated

Estimate 9.34 8.00 7.00 7.00 7.00
Std. Error 3.41 3.10 4.04 3.13 0.01
t value 2.74 2.58 1.73 2.24 794.45
Pr(>|t|) 0.03 0.05 0.13 0.08 0.00
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Lecture 4: Analysis {Covariate and Regression Adjustment}

OLS and its discontents: Illustration

Two strata with different potential outcomes and assignment
probabilities.
So, OK on estimates but what about those varying p values in that
last row? Skip to ri

Idea: OLS can give the wrong answer if there is heterogeneity. But
you do not need to use it.
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Lecture 4: Analysis {Covariate and Regression Adjustment}

Conditional Bias and Precision Gains from Controls
What controls can do however is reduce noise and improve precision. This is an
argument for using variables that are correlated with the output (not with the
treatment).

Figure 2: Controls likely less important for big experiments
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Lecture 4: Analysis {Covariate and Regression Adjustment}

Conditional Bias and Precision Gains from Controls
However, including controls when treatment is correlated with covariates
can reduce “conditional bias.” Doing this will change your estimates so be
sure not to fish!

Figure 3: Advantages of controlling for vars that are correlated with outcomes
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{Randomization Inference}
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference

Introducing an entirely new way to think about statistical
significance. . .
Say you randomized assignment to treatment and your data looked like
this.

Unit 1 2 3 4 5 6 7 8 9 10
Treatment 0 0 0 0 0 0 0 1 0 0
Healthy? 3 2 4 6 7 2 4 9 8 2

Does the treatment improve your health?
p =?
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference

Introducing an entirely new way to think about statistical
significance. . .
Say you randomized assignment to treatment and your data looked like
this.

Unit 1 2 3 4 5 6 7 8 9 10
Treatment 0 0 0 0 0 0 0 1 0 0
Healthy? 3 2 4 6 7 2 4 8 9 2

Does the treatment improve your health?
p =?

Macartan Humphreys Lectures on causal inference and experimental methods 179 / 225



Lecture 4: Analysis {Randomization Inference}

Randomization Inference: Some code

In principle it is very easy.
These few lines generate data, produce the regression estimate and
then an RI estimate of p:

X <- rep(c(FALSE,TRUE),50)
Y <- .5*X + rnorm(100) # DATA

b = matrix(NA,10000) # RI
for(i in 1:length(b)){

Z <- sample(X)
b[i] <- mean(Y[Z])- mean(Y[!Z])
}

mean(b>=mean(Y[X])- mean(Y[!X])) # One sided p value

[1] 0.0056
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference

In practice it is a good idea to create a P matrix when you do your
randomization (although note: if the null is about one treatment, then you
are interested only in the randomization of that treatment, not the joint
randomization of all)
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Lecture 4: Analysis {Randomization Inference}

RI (Problem revisited)
Return to this problem.
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Given the strata, what are the chances that you would estimate such a big effect if
in fact there was no effect for any unit?
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Lecture 4: Analysis {Randomization Inference}

RI (Problem revisited)
Return to this problem.
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It is the probability that the two units that have Y(1)=14 both get assigned to
treatment = (1/2)*(1/3)=1/6.
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference

Say you had a silly randomization procedure and forgot to take account
of it in your estimates.

You estimate .15. Does the treatment improve your health?
p =?
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference

Randomization procedures are sometimes funky in lab experiments
Using randomization inference would force a focus on the true
assignment of individuals to treatments
Fake (but believable) example follows
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference

Table 21: Optimal assignment to treatment given constraints due to facilities

Capacity T1 T2 T3
Session Thursday 40 10 30 0

Friday 40 10 0 30
Saturday 10 10 0 0

90 30 30 30

Table 22: Constraints due to subjects

Subject Type N Available
A 30 Thurs, Fri
B 30 Thurs, Sat
C 30 Fri, Sat
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference
If you think hard about assignment you might come up with an allocation like this.

Table 23: Assignment of people to days

Allocation
Subject Type N Available Thurs Fri Sat

A 30 Thurs, Fri 15 15
B 30 Thurs, Sat 25 5
C 30 Fri, Sat 25 5

That allocation balances as much as possible. Given the allocation you might randomly
assign individuals to different days as well as randomly assigning them to treatments
within days. If you then figure out assignment propensities, this is what you would get:

Assignment Probabilities
Subject Type N Available T1 T2 T3

A 30 Thurs, Fri 0.25 0.375 0.375
B 30 Thurs, Sat 0.375 0.625 0
C 30 Fri, Sat 0.375 0.625
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference
Even under the assumption that the day of measurement does not matter, these
assignment probabilities have big implications for analysis.

Assignment Probabilities
Subject Type N Available T1 T2 T3

A 30 Thurs, Fri 0.25 0.375 0.375
B 30 Thurs, Sat 0.375 0.625 0
C 30 Fri, Sat 0.375 0.625

Only the type A subjects could have received any of the three treatments.
There are no two treatments for which it is possible to compare outcomes for
subpopulations B and C
A comparison of T1 versus T2 can only be made for population A ∪ B
However subpopulation A is assigned to A (versus B) with probability 4/5; while
population B is assigned with probability 3/8

Implications for design: need to uncluster treatment delivery
Implications for analysis: need to take account of propensities

Idea: Wacky assignments happen but if you know the propensities you can do the
analysis.

Skip to Endog Subgroups or Big Ideas
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Lecture 4: Analysis {Randomization Inference}

Randomization Inference
Randomization inference can get quite a bit more complicated when you want
to test a null other than the sharp null of no effect.
Say you wanted to test the null that the effect is 2 for all units. How do you
do it?
Say you wanted to test the null that an interaction effect is zero. How do you
do it?
In both cases by filling in a potential outcomes schedule given the hypothesis
in question and then generating a test statistic

Observed Under null that Under null that
effect is 0 effect is 2

Y(0) Y(1) Y(0) Y(1) Y(0) Y(1)
1 ? 1 1 1 3
2 ? 2 2 2 4
? 4 4 4 2 4
? 3 3 3 1 3
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Lecture 5: Complications for Design and Inference
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Noncompliance and the LATE estimand
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Lecture 5: Complications for Design and Inference Noncompliance and the LATE estimand

LATE—Local Average Treatment Effects

Sometimes you give a medicine but only a non random sample of people actually try to
use it. Can you still estimate the medicine’s effect?

X = 0 X = 1
T = 0 y00 y01

(n00) (n01)
T = 1 y10 y11

(n10) (n11)

Say that people are one of 3 types:

na “always takers” have X = 1 no matter what and have average outcome ya

nn never takers have X = 0 no matter what with outcome yn

nc compliers have X = T and average outcomes y1
c if treated and y0

c if not.
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Lecture 5: Complications for Design and Inference Noncompliance and the LATE estimand

LATE—Local Average Treatment Effects

Sometimes you give a medicine but only a non random sample of people
actually try to use it. Can you still estimate the medicine’s effect?

X = 0 X = 1
T = 0 y00 y01

(n00) (n01)
T = 1 y10 y11

(n10) (n11)

We can figure something about types:

X = 0 X = 1

T = 0
1
2 nc

1
2 nc + 1

2 nn
y0

c +
1
2 nn

1
2 nc + 1

2 nn
yn ya

T = 1 yn
1
2 nc

1
2 nc + 1

2 na
y1

c +
1
2 na

1
2 nc + 1

2 na
ya
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Lecture 5: Complications for Design and Inference Noncompliance and the LATE estimand

LATE—Local Average Treatment Effects

You give a medicine to 50% but only a non random sample of people actually try to use it.
Can you still estimate the medicine’s effect?

X = 0 X = 1
T = 0 nc

nc +nn
y0

c + nn
nc +nn

yn ya
(n) ( 12 (nc + nn)) ( 12na)

T = 1 yn
nc

nc +na
y1

c + na
nc +na

ya
(n) ( 12nn) ( 12 (na + nc ))

Average in T = 0 group: nc y0c +(nnyn+naya)
na+nc +nn

Average in T = 1 group: nc y1c +(nnyn+naya)
na+nc +nn

Difference: ITT = (y 1
c − y 0

c) nc
n

So: LATE = ITT × n
nc
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Lecture 5: Complications for Design and Inference Noncompliance and the LATE estimand

The good and the bad of LATE

You get a well defined estimate even when there is non random take up
May sometimes be used to assess mediation or knock-on effects
But:

You need assumptions (monotonicity and the exclusion restriction –
where were these used above?)
Your estimate is only for a subpopulation
the subpopulation is not chosen by you and is unknown
Different encouragements may yield different estimates since they may
encourage different subgroups
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Spillovers

Macartan Humphreys Lectures on causal inference and experimental methods 196 / 225



Lecture 5: Complications for Design and Inference Spillovers

SUTVA violations (Spillovers)
Spillovers can result in the estimation of weaker effects when effects are actually stronger.

Control Treatment

No spillovers. Total effect = 4, Estimated Effect = 4

0
1

2
3

4

Control Treatment

With spillovers. Total effect = 7, Estimated Effect = 1

0
1

2
3

4

The key problem is that Y (1) and Y (0) are not sufficient to describe potential outcomes
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Lecture 5: Complications for Design and Inference Spillovers

SUTVA violations

More completely specified potential outcomes (and estimands)

0 1 2 3 4
Unit Location D∅ y(D∅) D1 y(D1) D2 y(D2) D3 y(D3) D4 y(D4)
A 1 0 0 1 3 0 1 0 0 0 0
B 2 0 0 0 3 1 3 0 3 0 0
C 3 0 0 0 0 0 3 1 3 0 3
D 4 0 0 0 0 0 0 0 1 1 3

ȳtreated - 3 3 3 3
ȳuntreated 0 1 4/3 4/3 1
ȳneighbors - 3 2 2 3
ȳpure control 0 0 0 0 0
ATT (direct effect) - 3 3 3 3
ATT (indirect effect) - 3 2 2 3

Table 24: Potential outcomes for four units for different treatment profiles, D1-D4.
Di represents an allocation to treatment and yj(Di ) is the potential outcome for
(row) unit j given (column) allocation i .

Macartan Humphreys Lectures on causal inference and experimental methods 198 / 225



Lecture 5: Complications for Design and Inference Spillovers

SUTVA violations
0 1 2 3 4

Unit Location D∅ y(D∅) D1 y(D1) D2 y(D2) D3 y(D3) D4 y(D4)
A 1 0 0 1 3 0 1 0 0 0 0
B 2 0 0 0 3 1 3 0 3 0 0
C 3 0 0 0 0 0 3 1 3 0 3
D 4 0 0 0 0 0 0 0 1 1 3

Table 25: Potential outcomes for four units for different treatment profiles, D1-D4.
Di represents an allocation to treatment and yj(Di ) is the potential outcome for
(row) unit j given (column) allocation i .

The key is to think through the structure of spillovers.
Here immediate neighbors are exposed
In this case we can define a direct treatment (being exposed) and
an indirect treatment (having a neighbor exposed) and we can work
out the propensity for each unit of receiving each type of treatment
These may be non uniform (here central types are more likely to have
teated neighbors); but we can still use the randomization to assess
effects

Idea: You can use the design to get a handle on spillovers
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Lecture 5: Complications for Design and Inference Spillovers

SUTVA violations}
Even still, to estimate effects you need some SUTVA like assumption.

But NB: Estimates of treatment effects are sensitive to assumptions of spillover structures. In
this example if one compared the outcome between treated units and all control units that are
at least n positions away from a treated unit you will get the wrong answer unless n ≥ 7.
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Lecture 5: Complications for Design and Inference Mediation

Mediation
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators
Consider a causal system like the below.
The effect of X on M1 and M2 can be measured in the usual way.
But unfortunately if there are multiple mediators the effect of M1 (or M2) on Y is
not identified.
The ‘excluson restriction’ is obviously violated when there are multiple mediators
(unless you can account for them all).
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators}
An obvious approach is to first examine the (average) effect of X on M1 and then
use another manipulation to examine the (average) effect of M1 on Y.
But both of these average effects may be positive (for example) even if there
is no effect of X on Y through M1.
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators}
An obvious approach is to first examine the (average) effect of X on M1 and then
use another manipulation to examine the (average) effect of M1 on Y.
Similarly both of these average effects may be zero even if X affects on Y
through M1 for every unit!.
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators}
Another somewhat obvious approach is see how the effect of X on Y in a regression
is reduced when you control for M. If the effect of X on Y passes through M then
surely there should be no effect of X on Y after you control for M.
But this common strategy is also not guaranteed to produce reliable results
See Imai on better ways to think about this problem and designs to address it
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators: Quantities

In the potential outcomes framework we can describe a mediation
effect as (see Imai et al):

δi (t) = Yi (t,Mi (1))− Yi (t,Mi (0)) for t = 0, 1
The direct effect is:

ψi (t) = Yi (1,Mi (t))− Yi (0,Mi (t)) for t = 0, 1
This is a decomposition, since:

Yi (1,Mi (1))− Y1(0,Mi (0)) = 1
2(δi (1) + δi (0) + ψi (1) + ψi (0))

If (and a big if), there are no interaction effects—ie
δi (1) = δi (0), ψi (1) = ψi (0), then

Yi (1,Mi (1))− Y1(0,Mi (0)) = δi + ψi

The bad news is that although a single experiment might identify the
total effect, it can not identify these elements of the direct effect.
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators: Solutions?

Check formal requirement for identification under single experiment
design (“sequential ignorability”—that, conditional on actual
treatment, it is as if the value of the mediation variable is randomly
assigned relative to potential outcomes). But this is strong (and in fact
unverifiable) and if it does not hold, bounds on effects always include
zero (Imai et al)
You can use interactions with covariates if you are willing to make
assumptions on no heterogeneity of direct treatment effects
over covariates. eg you think that money makes people get to work
faster because they can buy better cars; you look at the marginal effect
of more money on time to work for people with and without cars and
find it higher for the latter. This might imply mediation through
transport but only if there is no direct effect heterogeneity (eg people
with cars are less motivated by money).
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Lecture 5: Complications for Design and Inference Mediation

The problem of unidentified mediators: Solutions?

Weaker assumptions justify ‘parallel design’
Group A: T is randomly assigned, M left free.
Group B: divided into four groups T ×M (requires two more
assumptions (1) that the manipulation of the mediator only affects
outcomes through the mediator (2) no interaction, for each unit,
Y (1,m)− Y (0,m) = Y (1,m′)− Y (0,m′).)

Idea 5: Understanding mechanisms is harder than you think. Figure out
what assumptions fly.

Skip to Spillovers or Big Ideas
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Lecture 6: Prospects and Limits

Lecture 6: Prospects and Limits
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Lecture 6: Prospects and Limits Prospects

Prospects
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Lecture 6: Prospects and Limits Prospects

Prospects

Whenever someone is uncertain about something they are doing (all the time)
Whenever someone hits scarcity constraints
When people have incentives to demonstrate that they are doing the right
thing (careful...)
Advice 1: If you can, start from theory and find an intervention, rather
than the other way around.
Advice: If you can, go for structure rather than gimmicks
Advice: In attempts to parse, beware of generating unnatural interventions
(how should a voter think of a politician that describes his policy towards
Korea in detail but does not mention the economy? Is not mentioning the
economy sending an unintended message?)
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Lecture 6: Prospects and Limits Prospects

Prospects & Potential

Randomization of where police are stationed (India)
Randomization of how government tax collectors get paid (do they get a
share?) (Pakistan)
Randomization of the voting rules for determining how decisions get made
(Afghanistan)
Random assignment of populations to peacekeepers (Liberia)
Random assignment of excombatants out of their networks (Indonesia)
Randomization of students to ethnically homogeneous or ethnically diverse
schools (anywhere?)

Macartan Humphreys Lectures on causal inference and experimental methods 212 / 225



Lecture 6: Prospects and Limits Ethics

Ethics
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Lecture 6: Prospects and Limits Ethics

Constraint: Is it ethical to manipulate subjects for research
purposes?

There is no foundationless answer to this question. So lets take some
foundations from the Belmont report and seek to ensure:

1 Respect for persons
2 Beneficience
3 Justice

Unfortunately operationalizing these requires further ethical theories. Lets
assume that (1) is operationalized by informed consent (a very liberal idea).
We are a bit at sea for (2) and (3) (the Belmont report suggests something
like a utilitarian solution).
The major focus on (1) by IRBs might follow from the view that if subjects
consent, then they endorse the ethical calculations made for 2 and 3 —they
think that it is good and fair.
This is a little tricky though since the study may not be good or fair because
of implications for non-subjects.
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Lecture 6: Prospects and Limits Ethics

Is it ethical to manipulate subjects for research purposes?

The problem is that many (many) field experiments have nothing like
informed consent.
eg Whether the government builds a school in your village, whether an
ad appears on your favorite radio show, and so on.
Consider three cases:

1 You work with a nonprofit to post (true?) posters about the crimes of
politicians on billboards to see effects on voters

2 You hire confederates to offer bribes to police officers to see if they are
more likely to bend the law for coethnics

3 The British government asks you to work on figuring out how the use of
water cannons helps stop rioters rioting
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Lecture 6: Prospects and Limits Ethics

Is it ethical to manipulate subjects for research purposes?}

Consider three cases:
You work with a nonprofit to post (true?) posters about the crimes of
politicians on billboards to see effects on voters
You hire confederates to offer bribes to police officers to see if they are
more likely to bend the law for coethnics
The British government asks you to work on figuring out how the use of
water cannons helps stop rioters rioting

In all cases there is no consent given by subjects
In 2 and 3 the treatment is possibly harmful for subjects and the
results might also be harmful. But even in case 1 there could be major
unintended harmful consequences.
In cases 1 and 3 however the “intervention” is within the sphere of
normal activities for the implementer.
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Lecture 6: Prospects and Limits Ethics

Constraint: Is it ethical to manipulate subjects for research
purposes?

Sometimes possible to use this point of difference to make a “spheres of
ethics” argument for “embedded experimentation”
Spheres of Ethics Argument: experimental research that involves
manipulations that are not normally appropriate for researchers may
nevertheless be ethical if:

Researchers and implementers agree on a division of responsibility where
implementers take on responsibility for actions
Implementers have legitimacy to make these decisions within the sphere of the
intervention
Implementers are indeed materially independent of researchers (no swapping hats)

Difficulty with this arguments:
Question begging: How to determine legitimacy of implementer? (Can we rule out
Nazi doctors?)

Otherwise keep focus on consent and desist if this is not possible
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Lecture 6: Prospects and Limits Transparency & Experimentation

Transparency & Experimentation
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Lecture 6: Prospects and Limits Transparency & Experimentation

Contentious Issues

Experimental researchers are deeply engaged in the movement towards more
transparency social science research.

Contentious issues (mostly):

Analytic replication. This should be a no brainer. Set everything up
so that replication is easy. Use rmarkdown, or knitr or sweave. Or
produce your replication code as a package.
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Lecture 6: Prospects and Limits Transparency & Experimentation

Contentious Issues

Experimental researchers are deeply engaged in the movement towards more
transparency social science research.

Contentious issues (mostly):

Data. How soon should you make your data available? My view: as
soon as possibe. Along with working papers and before publication.
Before it affects policy in any case. Own the ideas not the data.
Hard core: no citation without (analytic) replication. Perhaps.
Non-replicable results should not be influencing policy.
Where should you make your data available? Dataverse is focal
for political science. Not personal website (mea culpa)
What data should you make available? Disagreement is over how
raw your data should be. My view: as raw as you can but at least
post cleaning and pre-manipulation.
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Lecture 6: Prospects and Limits Transparency & Experimentation

Contentious Issues

Experimental researchers are deeply engaged in the movement towards more
transparency social science research.

Contentious issues (mostly):

Should you register?: Hard to find reasons against. But case
strongest in testing phase rather than exploratory phase.
Registration: When should you register? My view: Before treatment
assignment. (Not just before analysis, mea culpa)
Registration: Should you deviate from an preanalysis plan if you
change your mind about optimal estimation strategies. My view: Yes,
but make the case and describe both sets of results.
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Lecture 6: Prospects and Limits Transparency & Experimentation

Contentious Issues

Experimental researchers are deeply engaged in the movement towards more
transparency social science research.

Contentious issues (mostly):

Registration: When should you register? My view: Before treatment
assignment. (Not just before analysis, mea culpa)
Registration: Should you deviate from an preanalysis plan if you
change your mind about optimal estimation strategies. My view: Yes,
but make the case and describe both sets of results.
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Lecture 6: Prospects and Limits Transparency & Experimentation

Hard Constraints

There remain hard constraints:

Real Time
History has Happened
Scale
Variables as Attributes
The assignment process matters

These may make experimentation hard or impossible. That’s OK. Let the
question determine the method.
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Backmatter
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Backmatter

About these slides

Credits: DeclareDesign code is developed with Graeme Blair, Jasper
Cooper, and Alex Coppock; DeclareDesign applications draw on
material developed by Anne Wilke and Tara Slough. Much thanks to
them.
These slides are written in Rmarkdown. Rmarkdown is a simple
markup language that lets you integrate R with LATEX. The great
advantage is that all code written in these slides is run on compilation
and so all output is generated live. Not all the code is displayed, but
you can always inspect the Rmd file to see the backend of these slides.
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