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Abstract When a single group uses majority rule to select a set of policies from
an n-dimensional compact and convex set, a core generally exists if and only if n =
1. Finding analogous conditions for core existence when an n-dimensional action
requires agreement from m groups has been an open problem. This paper provides
a solution to this problem by establishing sufficient conditions for core existence
and characterizing the location and dimensionality of the core for settings in which
voters have Euclidean preferences. The conditions establish that a core may exist in
any number of dimensions whenever n ≤ m as long as there is sufficient preference
homogeneity within groups and heterogeneity between groups. With m > 1 the core
is however generically empty for n > 4m−2

3 . These results provide a generalization
of the median voter theorem and of non-existence results for contexts of concern to
students of multiparty negotiation, comparative politics and international relations.

1 Introduction

A fundamental result from the spatial theory of voting is that simple majority voting
over multidimensional issue spaces typically admits no political equilibrium (Plott
1967; Schofield 1978). A consequence is that theories that rely on the spatial model
cannot make predictions on the outcomes of voting processes without either elimina-
ting the complexity of the issues being voted upon or imposing procedural constraints
that prevent some majority-preferred outcomes from being implemented. In practice
both types of restriction are commonly applied.

The problem of determining whether or not a political equilibrium—the “core”—
exists for the more general class of decision rules in which for a decision to be made

M. Humphreys (B)
Columbia University, 701 IAB, 420 West 118th Street, New York, NY 10027, USA
e-mail: macartan@gmail.com

123



M. Humphreys

or a bill to be passed, it must be acceptable to m groups of actors, with each group
using majority rule internally, remains open.1 This more general problem has multiple
applications in the study of comparative politics and international relations. Bicameral
institutions require that two houses agree simultaneously on a bill for it to pass. Corpo-
ratist institutions search for agreements that are simultaneously acceptable to business
interests, labor and government. Consociational institutions designed for ethnically
divided societies often require multiple majorities also: the Northern Irish assembly
requires the consent of a majority of nationalists and a majority of unionists simul-
taneously for the passage of a bill; the Belgian constitution stipulates that modifying
the limits of the linguistic regions requires a law adopted by majority vote in each
linguistic group in each House; the adoption of a European constitution may require
ratification by as many as 27 member states. There are multiple applications in the
study of economic policy coordination and trade policy agreements that have been of
long-standing concern to students of international relations (Evans et al. 1993).

Given the range of applications, it is striking that one of the dominant approaches
to the study of voting, the spatial model, has almost nothing to say on the problem.
Only two pieces consider the general m × n case—that is, cases with m groups in n
dimensions. The first, by Cox and McKelvey (1984), provides conditions for existence
and uniqueness of “ham sandwich cuts” (defined below). Cox and McKelvey remark
that a necessary, but not a sufficient, condition for an outcome to be in the core—that is,
to be unbeatable by any other point—in m-cameral settings with Euclidean preferences
is that it lies on all such cuts (if there are any). But they do not provide conditions
for the existence of a core. Most recently Bräuninger (2003) has tackled questions of
direct concern to this study, independently proving a version of Proposition 3 below.
This work does not, however, establish necessary, or sufficient conditions for core
existence.

More has been done on the special case of two groups. Hammond and Miller (1987)
establish sufficient but not necessary conditions for the existence of core points in two
dimensions. Tsebelis and Money (1997) concentrate on 2 × n cases. They suggest
that in such cases the core may be generically empty when there are more than two
dimensions although they do not provide a proof for this claim.

There also exists theoretical work for general institutional environments. This work
uses the “Nakamura number,” N , to locate a maximum number of dimensions in which
the existence of a core may not be guaranteed [see for example, Nakamura (1979);
Schofield (1984, 1999); Strnad (1985)]. If the dimensionality of policy space is less
than or equal to N − 2, then with weak restrictions on preferences, the core is not
empty (Austen-Smith and Banks 2000, Theorem 5.3). However, if the dimensionality
is greater than N − 2, then profiles exist such that voting cycles may be constructed
even when preferences are constrained to be strictly convex (Austen-Smith and Banks
2000, Theorem 5.4). The Nakamura number is typically the same for unicameral
and multicameral majoritarian decision rules (N = 3) and so the results that use
the Nakamura number suggest that no matter how many groups there are, a core is

1 Note that technically the core always exists but may be the empty set. Here we use the terms core
non-existence and core emptiness interchangeably.
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guaranteed only in one dimension.2 Note that this result tells us that a core cannot
be guaranteed in dimensions greater than 1, not that the core cannot exist in higher
dimensions. Related work also finds dimensionality conditions under which cores are
generically empty. Austen-Smith and Banks (2000) show for example that the core is
generically empty when n > 3(|N | − 3)/2, where |N | is the total number of agents
(Austen-Smith and Banks 2000, Corollary 6.2). However, this is not a tight bound.
In multicameral settings with dozens or hundreds of individuals in each group, this
minimum number can be extremely large indeed.

Hence these more general results say little about multicameral politics. They confirm
that a core may fail to exist for n > 1 and that it will certainly fail to exist when n
is very large. However, while from the perspective of these more general results, the
multicameral setting looks much like the unicameral setting, the pessimism associated
with majority rule equilibria in multidimensional settings is not justified with regard
to multi-group problems. Although the Nakamura number is insensitive to the number
of groups, this does not imply that core existence does not depend on the number of
groups. The reason is this: present work simply places upper and lower bounds on
the possibility of core existence. For settings with large numbers of voters, the range
between these lower and upper bounds is very large indeed and can include all cases
of substantive interest. Within this range this work is silent: we do not know under
what conditions a core may or may not exist.

Hence there exists a wide range of cases of importance to the study of comparative
politics and international relations in which multiple groups vote over agreements.
Yet this class of cases has been largely ignored by formal theory, which, to date has
focused primarily on voting in single houses.

This study responds to this problem by providing extensions to multi-group voting
situations of two fundamental results from the spatial model. Specifically I find that
for Euclidean preferences and m > 1:

• if n > 4m−2
3 then the core is empty: in this case, decisive coalitions can always

form involving individuals from different group that can overturn any status quo,
provided that there is some minimal degree of heterogeneity within groups.

• if there are at least as many groups as there are policy dimensions, then decisive
coalitions cannot always form across groups and a non-empty core may exist that
lies on some central “contract space” between the groups.

By providing sufficient conditions for existence or non-existence of the core in m × n
cases this analysis provides results analogous to the much-used median voter theorem

2 The Nakamura number, N , is “the cardinality of the smallest set of winning coalitions with the property
that the intersection of its members is empty” (see for example, Schofield 1978). In simple majority rule
games the Nakamura number is 3, except for the special case where there are exactly four players, in
which case the Nakamura number is 4. If there is a single player in a group, then, by convention, the
Nakamura number is ∞. See Schofield (1978, 1984, 1985, 1999) and Austen-Smith and Banks (2000).
Letting N j denote the Nakamura number for a unicameral game for group j , then the Nakamura number
for a multicameral game is N = max{N j } j=1,...,m. In general then, no matter how many groups there are,
we can expect the Nakamura number for multicameral games to be 3 (although it may be 4 if there is some
group with only four members and it may be ∞ if there is some group with only one member).
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(Black 1958) and the more pessimistic results on the emptiness of the majority rule
core (such as those in Plott 1967; Schofield 1984) for a more general class of games.3

These new results provide a basis for qualitative statements about the possibility of
core existence and the form that the core takes even in high dimensions.

2 Preliminaries

2.1 Model

Let G = {G j } j=1,2,...,m denote a collection of m groups of voters. The set of all voters
is given by N = ∪m

j=1G j . We assume that there is more than one voter in each group

G j and that the number of voters in each group is odd.
The set of feasible policies available to voters is a compact and convex subset, X ,

of R
n . We assume that X is of full dimension.

Each individual i ∈ N , has “Euclidean” preferences representable by a utility
function, ui : X → R

1, given by ui (x) = φi (||pi − x ||), where ||.|| denotes the
Euclidean norm, pi ∈ X represents an “ideal point” and φi is any strictly monotone
decreasing function. Note that the set of points that individual i “prefers” to a given
point x∗, is given by the convex set {x ∈ X : ||pi − x || < ||pi − x∗||}.

Let P =X |N | denote the set of all |N |-tuples of ideal points and let p = {pi }i∈N

denote a typical element of P . Let P(p) = {P j } j=1,2,...,m denote the partitioning of
p that places pi in P j if and only if i ∈ G j . Hence P inherits from G the properties
that there is more than one ideal point in each P j and that |P j | is odd for all j .

We consider an aggregation rule f , that maps from P to the set of all complete and
reflexive binary relations on X , given by

x f (p)y ⇔ ∃C ⊆ N s.t. (i) ui (x) ≥ ui (y)∀i ∈ C

(ii) |C ∩ G j | ≥ |G j |+1
2 for some G j ∈ G

Informally, the multicameral rule states that “x is weakly preferred to y if and only
if there exists a set of voters that weakly prefer x to y and that constitute a majority
of some group.” Note that this rule can also be written more compactly as

x f (p)y ⇔ ∃G j ∈ G : |{i ∈ G j : ui (x) ≥ ui (y)}| ≥ |G j | + 1

2

This has the interpretation: “x is weakly preferred to y if and only if a majority
of some group weakly prefers x to y.” We emphasize however that although this
statement is perhaps more intuitive, the relation between alternatives is correctly seen
in this model as a function of the preferences of individuals and coalitions of individuals
and not as a function of the preferences of the groups.

3 Although the preferences considered in this paper are less general than those examined in Plott (1967)
and Schofield (1984).
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The asymmetric part of f is written as f ′, with

x f ′(p)y ⇔ ∃C ⊆ N s.t. (i) ui (x) > ui (y)∀i ∈ C

(ii) |C ∩ G j | ≥ |G j |+1
2 ∀G j ∈ G

Informally: “x beats y if and only if there is a coalition that strictly prefers x to y
and that includes a majority in every group,” or, more simply, “if and only if a majority
in every group prefers x to y.” Like the simple majority decision rule, the multicameral
rule is monotonic and proper, but unlike the simple majority rule (with odd numbers
of players) it is not strong.4

The “core,” C , for f in X is the set of “unbeatable” outcomes; that is, C( f (p)) =
{x ∈ X : ∀y ∈ X, x f (p)y} (Austen-Smith and Banks 2000, Definition 4.5; McKelvey
and Schofield 1987, p. 924). Hence under the multicameral aggregation rule, a point,
x , is in the core if it is impossible to find a coalition that contains a majority of each
group that strictly prefers some other point to that point. We say that the core “exists”
if C( f (p)) �= ∅.

2.2 Notation and definitions

Co(B), Aff(B),B and Int(B) are used respectively to denote the convex hull, the
affine hull, the closure and the interior of a set B. The interior of a convex set B
relative to Aff(B) is written ri(B). A “hyperplane,” L , in R

n is an (n −1)-dimensional
affine manifold, defined as: L(v, a) = {x |x .v = a} for a ∈ R

1 and directional
vector v ∈ Sn−1. A set of hyperplanes is considered “independent” if their directional
vectors are linearly independent. The “open half spaces” of hyperplane, L(v, a), are
the convex sets L+ = L+(v, a) = {x |v.x > a} and L− = L−(v, a) = {x |v.x < a}.

We are especially interested in hyperplanes that divide the collection of ideal points
in particular ways. To describe such planes we make use of a group-specific function
µ j : 2X → [0, 1] that records the share of points in P j in a given subset B of X :
µ j (B) = ∑

{i∈G j :pi ∈B} 1
|P j | .

Making use of this measure, a “median hyperplane” for a group G j in R
n is a

hyperplane, M , for which µ j (M+) ≥ 0.5 and µ j (M−) ≥ 0.5. From the assumption
that groups contain an odd number of voters it follows that there is no set B such that
µ j (B) = 0.5 for any group G j . The exclusion of this possibility allows us to define
a median hyperplane alternatively as an (n − 1)-dimensional hyperplane, M , with
µ j (M+) < 0.5 and µ j (M−) < 0.5. We say that a halfspace, M+ j , is a “majority
half space”, for group G j , if µ j (M+ j ) > 0.5.

4 A set of voters, C ⊆ N is decisive if for every profile of preferences and for all pairs x , y if every member
of C strictly prefers x to y then x is strictly preferred to y. Under the multicameral rule examined here, a

set of voters C ⊆ N , is decisive if |C ∩ G j | ≥ |G j |+1
2 for all G j ∈ G. It can be seen immediately that

the set of decisive coalitions under the multicameral rule is monotonic (if C is decisive so is any superset
of C) and proper (if C is decisive then N\C is not). A rule is strong if for every coalition, C , either C or
its complement is decisive. Note that if C contains a majority of some but not all groups then so too does
its complement and hence neither coalition is decisive under the multicameral rule.
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A “ham sandwich cut” is a plane that is median to n groups. A ham sandwich cut
through the collection P(p) leaves half the points in each group on either side of it.
Hence H is a ham sandwich cut if and only if µ j (H+) < 0.5 and µ j (H−) < 0.5 for
all j . Existence of a ham sandwich cut for n groups in n dimensions is guaranteed by
the generalized ham sandwich theorem for discrete distributions (Cox and McKelvey
1984; Hill 1988).5

3 Core existence

We make use of four general features that follow from our assumptions regarding
group sizes and individual preferences.

The first, given in Lemma 1, is that if a point x may be beaten by any point, x∗,
then it may be beaten by all points in the interior of Co({x, x∗}). This follows directly
from the fact that players have convex preferences.

Lemma 1 If x∗ f ′(p)x, then z f ′(p)x∀z ∈ Co({x, x∗}).
The second, following from the fact that there is an odd number of voters in each

group, guarantees that for each direction there is only one median plane for each group.
A consequence of this result is that for any v ∈ Sn−1 we can unambiguously refer to a
median plane for a group, G j , by its directional vector, writing M j

v = M j (v, a j (v)).

Lemma 2 For each group and for each direction there exists a unique median hyper-
plane.

The third feature, given in Lemma 3, is that whenever points do not lie on a median
plane we can readily identify other points that majorities prefer to them. In particular
an orthogonal projection of a given point onto a median plane of group G j is preferred
by a majority of voters in G j . One implication, illustrated in Fig. 1, is that any core
point must lie on all ham sandwich cuts.

Lemma 3 If a point, x, does not lie on some median hyperplane of a group then some
point on that hyperplane is preferred by some majority of voters in that group.

Lemmas 1 and 3 together imply that given a median hyperplane M(v, a), and point
x , with a < x .v, a majority prefers not only some point on M(v, a′) to x but also some
point on any parallel hyperplane, L(v, a′), between x and M (with a < a′ < x .v).

The final feature, given in Lemma 4, is that if we know that a majority prefers one
point to another then we can infer information about the location of a majority half
space.

Lemma 4 For two distinct points x and x ′, choose v ∈ Sn−1 and ε > 0, such that
x ′ = x + εv. If a majority of group j prefers x ′ to x then M j

v ⊂ L+(v, x .v) and
µ j (L+(v, x .v)) > 0.5.

5 The original ham sandwich theorem for continuous measures derives from Steinhaus (1945).
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x

*x
H

Fig. 1 The line H is median to the set of black points and to the set of white points. The point x lies off of
H and so can be beaten by x∗, an orthogonal projection of x onto H

Our first major result states that no matter how many dimensions there are, a core
may exist provided there are as many groups. The proof of the proposition is construc-
tive and helps us to locate particular core points for a given distribution of voter ideal
points.

Proposition 1 Assume m = n and consider some collection of ideal points p ∈P. Let
H(u, a) denote a ham sandwich cut through P(p) and define the set of convex sets
B = {B j } j=1,2,...,m where B j =Co(P j ) ∩ H. Then C( f (p)) �= ∅ if B is strongly
separable on H.

This Proposition makes use of a notion of strong separability—a strengthening of
the idea of separable sets used in Cox and McKelvey (1984). We say that a collection
of m sets B = {B j } j=1,2,...,m in R

n is “separable” if for all B j in B, there exists some
(n − 1)-hyperplane, L j , with B j ⊆ L j+ and B\B j ⊆ L j−. We say that a collection
of m sets, B = {B j } j=1,2,...,m in R

n is “strongly separable” if for all B j in B, there
exists an (n − 1 )-hyperplane, L j , with each sub-collection of m − 1 hyperplanes in
{L j } j=1,2,...,m independent, such that:

1. B j ⊆ L j+ and B\B j ⊆ L j−

2. Int
(⋂m

j=1 L j+
)

�= ∅.

Similarly we say that m sets, B = {B j } j=1,2,...,m are strongly separable on an affine
set, H , if the intersections of the sets with H are non-empty and are strongly separable
on the affine space spanned by H .

Figure 2 illustrates the notions of separability and strong separability, showing how
strong separability on R

n is indeed a stronger condition than separability.6

To prove the proposition we require two further Lemmas. The first, Lemma 5,
illustrated in Fig. 3, establishes that when a (n − 1)-hyperplane cuts through an

6 Strong separability on R
n implies separability but separabilty does not imply strong separability. Also,

whereas for any m > 1 and n > 1, some arrangement of m groups may be separable in R
n , the independence

condition implies that m groups may only be strongly separable in R
n if m ≤ n + 1.
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HH

Fig. 2 The panels above show three discs on a plane H . The first collection of discs is separable but not
strongly separable on H . The second is strongly separable on H : the hatched area in the second panel shows

a non-empty set
⋂3

j=1 L j+ ∩ H

Fig. 3 The hyperplane (line) T
intersects with the interior of �.

As a result, one of the three
cones induced by � lies
completely on either side of T ,
K1 on one side and K3 on
another. K2 does not lie
completely on one side or the
other of T

L -1
L1

L +1

L +2

L2

L -2

L -1
L1

L +1

L3
L +3

L -3

K1

K3K2

L +2

L2 L -2

L3

L +3

L -3

T

T

n-dimensional simplex in R
n , it places one region of the space—an affine cone with

a vertex of the simplex as its vertex—entirely on one side of the plane and another
such region entirely on the other (note that although the term “simplex” is often used
to describe sets of dimension (n − 1) in R

n , our concern in this lemma is with full
dimensional simplices).

Lemma 5 Consider some non-empty n dimensional simplex � in R
n bounded by an

arrangement of n + 1 hyperplanes {L j } j=1,2,...,n+1 and label the halfspaces of these

hyperplanes such that � = ⋂n+1
j=1 L j+. Let K denote the collection of sets

{K j } j=1,2,...,n+1 where K j = ⋂
k∈{1,2,...,n+1}\ j Lk− ∩ L j+. Then for any hyperplane

L such that L ∩ Int(�) �= ∅, at least one element of K lies in L+ and at least one
other lies in L−.

Proof See Appendix. ��
The second, Lemma 6, establishes that the intersection of two median planes of a

group intersects with the convex hull of the ideal points of a group (see Fig. 4).
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M1

M2

M1∩ M 2

Fig. 4 The intersection of two Median Hyperplanes for a given group intersects with the convex hull of
the ideal points of the voters in that group

Lemma 6 Let M1 and M2 be two distinct median hyperplanes for a group G j . Then
M1 ∩ M2∩Co(P j ) is not empty.

Proof Follows from Lemma 1 in Cox and McKelvey (1984), the compactness of X ,
and Lemma 2. ��

With these two lemmas we turn to the proof of the main proposition.

Proof Note that H spans an affine space of dimension n − 1. Furthermore, since H
is median for all groups, B j is non-empty for all j . Choose some arrangement of
(n −2)-dimensional hyperplanes L = {L j } j=1,...,n in H such that for all j , B j ⊆ L j+

and B\B j ⊆ L j− and � = ⋂n
j=1 L j+ ∩ H has a non-empty interior relative to

H , where L j+ (L j−) denotes the open upper (lower) half space of L j relative to H .
Existence of such an arrangement is guaranteed by the strong separability of B on H .
Note that, by construction, B j ⊂ ⋂

k∈{1,2,...,n}\ j Lk− ∩ L j+ ∩ H . Finally, note that
the set � is an (n − 1)-dimensional simplex whose vertices are given by the n points
{⋂k∈{1,2,...,n}\ j Lk ∩ H} j=1,...,n . We now show in particular that x∗ ∈ri(�) implies
x∗ ∈ C( f (p)).

Assume to the contrary that for some x∗ ∈ri(�) we have x∗ /∈ C( f (p)) and in
particular that there exists some point x ′ with x ′ f ′x∗. The rival point x ′ may be written
x ′ = x∗ + εv with ε > 0 and v ∈ Sn−1. We know from Lemma 3 that, since x ′ is
strictly preferred to x∗ by a majority in all groups and H is a median plane for all
groups, v and u must be linearly independent. Consider now the (n − 1)-hyperplane,
Lv , with directional vector v that passes through x∗. For each j let M j

v denote the
unique median hyperplane for group j in direction v. Existence of these hyperplanes
is guaranteed by Lemma 2. Since x ′ beats x∗ there lies a majority of ideal points
from every group inside the open half space, L+

v of Lv and there exist corresponding

majority halfspaces M j+
v for each group G j which are strict subsets of L+

v (Lemma 4).

Now, from Lemma 6, for each group G j , there exists some point w j in M j
v ∩ H with
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w j ∈ Co (P j ). Since such a point is in both H and Co(P j ) it lies in B j . Furthermore,

since w j is in M j+
v and M j+

v is a strict subset of L+
v then w j is not in L−

v . Hence for

every group j , some point in B j does not lie in L−
v . We have then:

(∗) for no j , is B j ⊂ L−
v ∩ H.

Now since Lv∩ri(�) �= ∅ and v and u are linearly independent, Lv ∩ H is an
n − 2 dimensional hyperplane that intersects with ri(�). Applying Lemma 5 to the
(n − 1)-dimensional affine subspace H we have:

(∗∗) for some j,B j ⊂ L−
v ∩ H.

But (∗∗) contradicts (∗) and hence no x ′ beats x∗. ��
Proposition 1 provides good news for the possibility of core existence in high

dimensions. Significantly, the condition of the Proposition requires neither separability
of P nor strong separability of P on R

n (strong separability on an affine subspace of
R

n is sufficient). And the Proposition is constructive insofar as it locates core points
in the relative interior of �.

Figure 5 illustrates the proposition. The figure shows two three member groups in
R

2. The first panel demonstrates that m = n in not sufficient for core existence: if
the separability condition of the proposition is not fulfilled for any ham sandwich cut
a core may fail to exist. The second panel emphasizes that the condition in Proposi-
tion 1, although a sufficient condition, is not a necessary and sufficient condition. The
condition may fail to hold but a core point may still exist. The final panel illustrates
the sufficiency condition. In this case the strong separability condition is satisfied for
the unique ham sandwich cut and a core is guaranteed.

While Preposition 1 is constructive it does not fully characterize the core. Proposi-
tions 2 and 3 make further steps towards such a characterization.

Proposition 2 The core is convex.

Proposition 3 For m = n if a core exists then it is of dimensionality of no more than
n − 1.

Proof From Lemma 3, if a core exists, all points in the core lie on every (n − 1)-
dimensional ham sandwich cut. From the ham sandwich theorem at least one such cut
exists. Finally, the intersection of these cuts is of at most dimensionality n − 1. ��

In the m = n case, then, the core is never full dimensional. In such cases when
the conditions of Proposition 1 are satisfied there is always at least one “dimension of
agreement” (orthogonal to the ham sandwich cut) between groups. In addition when
the core exists there is also a “zone of disagreement” which lies on a ham sandwich
cut: when this core is of dimension n − 1 (as for example in the cases identified in
Proposition 1) it is as a subset of the affine hull of the ideal points of a particular
collection of players—one player from each group. Small changes in the locations of
these ideals alter the location of the core.

I now turn to consider the case in which there are more groups than dimensions.
From the definition of the multicameral aggregation rule it is easy to see that if a core
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Fig. 5 A situation with
m = n = 2. The ideal points of
one group are marked with
circles and those of the other
with squares. Ham sandwich
cuts are marked with lines. The
separability condition from
Proposition 1 is not satisfied in
the first two panels. In the first no
point lies on all ham sandwich
cuts and so the core is empty. In
the second there is a core point
even though the separability
condition is not fulfilled. In the
third case the intersections of the
ham sandwich cut and the
convex hulls of player ideals are
marked with thick lines. These
sets are strongly separable on the
ham sandwich cut and so the
condition of Proposition 1 is
fulfilled and hence there is a
non-empty core

exists for some subcollection of groups then a core exists for the full collection of
group. Hence, with m > n, if the conditions of Proposition 1 are satisfied for any
subcollection of n groups, then a core also exists for the m × n case. Proposition 4
continues by showing, more constructively, that a “full dimensional” core may exist
with m > n under conditions that may be satisfied even if no core exists among any
collection of n groups. To do so, Proposition 4 makes use of the idea of the “yolk”
of a group, Y j , defined as the smallest hypersphere that intersects with all median
hyperplanes of a collection of points P j (Feld et al. 1988).
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Lv

M1
v

M3
v

v

x

Fig. 6 Illustration of Proposition 4. There are three groups in R
2, the triangles, the circles, and the squares.

No bicameral core exists between any two groups but a tricameral core exists because the yolks of the three
groups are strongly separable. Any movement from a point such as x in � is always opposed by a majority
in at least one group. In this case two triangles oppose the move as seen from the fact that M1

v lies in L−
v

Proposition 4 Assume m = n+1 and consider some p ∈P. Let Y = {Y j } j=1,2,...,n+1
denote a collection of n +1 yolks corresponding to the collection P(p). If Y is strongly
separable on R

n by some collection of n + 1 hyperplanes L = {L1, . . . , Ln+1}, with
each collection of n hyperplanes independent, such that Y j ⊂ ⋂

k∈{1,2,...,n+1}\ j Lk−∩
L j+ for j = 1, 2, . . . , n+1 and � = ⋂n+1

j=1 L j+�= ∅, then every point x in the interior
of � is in the core.

Proof See Appendix. ��
Figure 6, which illustrates Proposition 4 also shows the yolks of three groups in

R
2. In this example it can be shown that there is no bicameral core between any pair

of the groups. The yolks of the three groups are strongly separable however and all
points in the (shaded) simplex “between” the yolks are in the core. The intuition is that
a move from any core point in direction v is necessarily a move away from a median
hyperplane with normal v for at least one group.

From the preceding propositions we know that in some situations a core may exist
and know when it may lie on an (n − 1)-dimensional space or on an n-dimensional
space. The proofs of the sufficient conditions for core existence have been constructive
insofar as they have identified core points. And these points have been “centrist.” The
following proposition places upper bounds on the size of the core and confirms that
in some sense all points in the core are centrist.

Proposition 5 No point outside the convex hull of the yolks of all groups is in the core.
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Proof Note that the convex hull of Y = {Y j } j=1,2,...,n+1 is compact. Consider some
point x not in this convex hull. By the separating hyperplane theorem there exists some
plane, Lv = L(v, a) with v.v = 1 such that x ∈ L−

v and Y ⊂ L+
v . We now show that

x∗ = x + (a − x .v)v, (that is, the projection of x onto Lv), is preferred by a majority
in each group to x .

Consider an arbitrary group j and let M(v, a j ) denote the median plane for group j
with directional vector v (existence of this median planes is guaranteed by Lemma 2).
From the definition of the yolk there exists some y j ∈ Y j with y j .v = a j . However,
since for all points y ∈ Y , y.v > a it follows that a j > a. Let x∗ j = x + (a j − x .v)v

denote the orthogonal projection of x onto M(v, a j ). Since x∗ j ∈ M(v, a j ), we know
that x∗ j is preferred by a majority in group j to x (Lemma 3). But since a j > a > x .v

it is easy to check that x∗ is a convex combination of x and x∗ j (specifically, x∗ =
a j −a

a j −x .v
x + a−x .v

a j −x .v
x∗ j ) and hence (from Lemma 1) that a majority of voters in group j

prefers x∗ to x . ��

4 Non-existence of the core

We now have sufficient conditions for core existence in the m ≥ n case. Core points
have been identified and a bound has been placed on the size and location of the set of
core points. The sufficient conditions produced for the m ≥ n cases for core existence
provide a counter to the pessimism that is associated with core existence in more than
one dimension.

However, I conclude this article on a pessimistic note. The emptiness of the core
in higher dimensions, familiar from the study of majority rule equilibrium, resurfaces
in general m × n settings: the core is generically empty whenever the number of
dimensions sufficiently exceeds the number of groups. In particular, generically, with
m > 1, the core is empty if n > 4m−2

3 . This result is stated and proved as the final
proposition, Proposition 6. The proposition implies that for m < 5, the core is empty
whenever there are more dimensions than groups. The upper bound is somewhat looser
for higher numbers of groups—hence for example, if m = 7 the proposition guarantees
the emptiness of the core only if n ≥ 9.

To establish genericity we demonstrate that the core is empty in sufficiently high
dimensions whenever ideal points are in “general position.” A collection of points
in R

n is in “general position” if for any k ≤ n, no more than k ideal points lie on
any k − 1 dimensional affine manifold. Such profiles are generic under two distinct
notions of genericity. The first common definition of genericity (used for example in
Austen-Smith and Banks 2000; Saari 1997) is that a set is generic if it is open and
dense. Since the set of profiles of ideal points that are not in general position is open
(if p is in general position, then all profiles arbitrarily close to p are also in general
position) and dense (if p is not in general position, then some other profile arbitrarily
close to p is), the set of |N |-tupiles of ideal points in general position is generic and
results that hold for ideals in general position, hold generically (within the class of
Euclidean preference profiles).7 Under another, related definition, a set is generic if its

7 See Theorems 1 and 2 in Pontriagin (1952) for proofs of these openness and denseness claims, respectively.
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Fig. 7 H is a ham sandwich cut
containing two points in A and
one in B. Intersections of cuts in
the neighborhood of H establish
that core points must lie on the
affine hull of {a1, b} and in the
affine hull of {a2, b} and must
therefore lie on b ∈ B

complement has zero (Lebesgue) measure; again under this definition existing results
establish that the set of profiles in general position is generic (see Keerthi et al. 1992).

The “general position” assumption is important for this result. It is always possible
for a core to exist in any number of dimensions when ideal points are not in general
position, but in these cases the core results are always vulnerable to arbitrarily small
perturbations in the location of ideals. As an example consider a situation with two
three member groups in n dimensions, n > 2. Let the ideals of the first player in
each group be given by (−1,−1, . . . ,−1), the ideal of the second by (0, 0, . . . , 0)

and the ideal of the third by (1, 1, . . . , 1). It is clear in this case that the origin is a
core point under majority rule for each group and also in the bicameral game. Yet as
is known from Plott’s results, a small perturbation of the ideals of the players into
general position is sufficient to upset the existence of the unicameral core, and also,
from Proposition 6, the bicameral core.

Proposition 6 Assume m ≥ 2 and n > 4m−2
3 . If ideal points are in general position,

then the core is empty.

The strategy of proof is to show that under the conditions of the proposition not
all ham sandwich cuts intersect. The key step is to identify sets of ham sandwich cuts
that intersect on lower dimensional sets and to show that these lower dimensional sets
do not themselves have a positive intersection. The logic is demonstrated in Fig. 7 for
the n = 3, m = 2 case. In the example shown in the figure we exploit the fact that
n > m to identify a ham sandwich cut that contains two points, a1 and a2 from group
A (the shaded group) and one point, b, from group B (the white group). The ham
sandwich cut, H , is the affine hull of {a1, a2, b} and is marked in the figure. Slight
perturbations of the ham sandwich cut yields other ham sandwich cuts that include
{a1, b} but exclude a2, and cuts that include {a2, b} but exclude a1. The intersection
of all of these cuts is the point b ∈ B. Thus if there is a core point it is b. In the same
way a cut H ′ can be identified that contains two points in B and one point, a3, in A
and by the same reasoning we establish that the core must be a3. But since a3 �= b the
core is empty. The proof is directly analogous for higher dimensional cases.
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5 Conclusions

In this paper I have provided sufficient conditions for core non-emptiness under
multicameral decision rules in multidimensional environments. By providing suf-
ficient conditions for the generic emptiness of the core, I also provide necessary
conditions for the existence of core points. These results give grounds for optimism
regarding core non-emptiness in this important class of decision rules. The sufficient
conditions for core non-emptiness used in Proposition 1 are also intuitively appealing—
an equilibrium obtains when there is more disagreement between groups than within
groups. In the absence of strong separability of groups, coalitions can form across
groups and overturn any status quo. The results, while demonstrating the possibility
of stable policy predictions in these settings, also provide grounds for caution for
students of international relations and comparative politics who analyze decision
making between multiple internally fragmented groups: in sufficiently complex
decision making settings, multiple veto points generated by institutional arrange-
ments such as consociational or bicameralism are not sufficient to guarantee an
equilibrium.

The findings generalize fundamental results from the spatial model of voting, but
there is room for further generalization along these lines. First, there remains inde-
terminacy about the possibility of core existence for cases where m < n ≤ 4m−2

3 .8

Core existence in these cases requires the positive intersection of an infinity of ham
sandwich cuts; as yet no results rule out such a possibility, even for points in general
position. Second, conditional upon n ≤ m I have identified sufficient but not necessary
and sufficient conditions for core existence. Without such conditions we are hampered
in quantifying the likelihood of observing a core and in locating all elements of the
core when we turn to data. Third, the results in this paper have been developed only
for the class of Euclidean preferences. While this class of preferences is consistent
with those used in much theoretical and empirical research, more is needed to confirm
that the results hold for more general classes of preferences.

Beyond such generalizations, however, the results from the model open up possi-
bilities for more applied work. I close by highlighting two.

First, consider the link between relations between groups on the one hand and the
salience of individual actors within groups on the other—a link of interest for example
for the study of the impacts of foreign affairs on domestic politics. We have seen that in
n ×n settings, the core, if it exists, lies on the affine hull of the ideal points of n voters:
one voter from each group. Hence the model identifies particular voters within groups
that have a privileged position that is endogenous to inter-group interactions. In fact,
these voters play a role similar to that of the median in one dimensional settings: they
are median along the dimension on which groups most agree, a dimension orthogonal
to the core.

Second, the identification of the core may provide a tool to solve extensive-form
games designed to study more highly specified political interactions. This is the role
that the median voter theorem has played in the modeling of policy choice: it has
provided a building block for more complex games. The emptiness of the core in

8 This interval contains positive integers only for m ≥ 5.
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higher-dimensional settings has limited the scope of this work, leading to frustration
with the core as a solution concept. As a fix, scholars, hoping to make progress,
either assume that political contention takes place over a single dimension or ignore
the heterogeneity between groups. Both responses remove a key feature of multi-
group politics—the possibility for coalitions to form across groups. Establishing that
a non-empty core may exist for multicameral decision rules means that for students of
multi-group politics, such frustration—as well as common responses to it—may no
longer be justified.

6 Appendix

6.1 Lemmas

Proofs of Lemmas 1, 2, 3 and 4 and of Propositions 2 and 6 are available at
http://www.columbia.edu/~mh2245/papers1/scw2008/

Lemma 7 Consider some non-empty n-dimensional simplex � in R
n bounded by

an arrangement of n + 1 hyperplanes {L j } j=1,2,...,n+1 and label the halfspaces of

these hyperplanes such that � = ⋂n+1
j=1 L j+. Let K denote the collection of sets

{K j } j=1,2,...,n+1 where K j = ⋂
k∈{1,2,...,n+1}\ j Lk− ∩ L j+. Then for any hyperplane

L such that L ∩ Int(�) �= ∅, at least one element of K lies in L+ and at least one
other lies in L−.

Proof Consider the set Q = {q j } j=1,2,...,n+1 with typical element q j =
{⋂k∈{1,2,...,n+1}\ j Lk} j=1,2,...,n+1. The points in Q are the vertices of � and are affinely

independent. Every point y in R
n can be uniquely written y = ∑n+1

j=1 λ j q j , subject to∑
λ j = 1. (the scalars {λ j } are the barycentric coordinates of y with respect to the

vertex set Q). The n + 1 hyperplanes {L j } j=1,2,...,n+1 divide R
n into 2n+1 − 1 open

regions determined by the signs of their barycentric coordinates. Points in the interior
of � are strict convex combinations of {q j } j=1,2,...,n+1 and hence have λ j > 0 for all
j . Points in K j have λ j > 0 and λi < 0 for i ∈ {1, 2, . . . , n + 1}\ j .

Now, consider some hyperplane L(u, a) that intersects the interior of �. Assume,
without loss of generality, that a = 0. Define v j = q j .u ∈ R

1 and note that min{v j } �=
max{v j } as otherwise the points in Q would be affinely dependent (v j is a measure of
how far a given vertex q j is from L(u, a)).

A point x with barycentric coordinates {λ j } is in L if x .u = 0, or equivalently,∑n+1
j=1 λ j q j .u = ∑n+1

j=1 λ j v j = 0. Similarly a point with barycentric coordinates {λ j }
is in L+ if

∑n+1
j=1 λ j v j > 0 and is in L− if

∑n+1
j=1 λ j v j < 0.

If x ∈ L∩Int(�) then the barycentric coordinates of x satisfy
∑n+1

j=1 λ jv j = 0 and
λ j > 0 for all j . Since not all vi = 0 this implies that some vi > 0 and some v j < 0.

Assume without loss of generality that v1 ∈ min{v j } < 0 and vn+1 ∈ max{v j } > 0.
We now demonstrate that K 1 and K n+1 lie in different halfspaces of L(u, a).
First substitute (1 − ∑n+1

j=2 λ j ) for λ1 to give
∑n+1

j=1 λ j v j = v1 + λ2(v2 − v1) +
· · ·+λn+1(vn+1 −v1). Now consider a point in K 1. For such a point λ2, λ3, . . . , λn+1
are all negative. Note however that since all the coefficients on λ2, λ3, . . . , λn+1 are
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non-negative, and v1 is negative, for any point in K 1,
∑n+1

j=1 λ j v j = v1 + λ2(v2 −
v1) + · · · + λn+1(vn+1 − v1) is negative and so all points in K 1 lie in L−.

Next, substituting (1−∑n
j=1 λ j ) for λn+1 we have

∑n+1
j=1 λ j v j = λ1(v1 −vn+1)+

λ2(v2−vn+1)+· · ·+vn+1. Now consider a point in K n+1. For such a point, λ1, . . . , λn

are all negative however. Since each of the coefficients (v j − vn+1) is also negative
and vn+1 is positive, for such a point

∑n+1
j=1 λ j v j > 0 and so all points in K n+1 lie in

L+.

Hence all points in K n+1 lie in L+ and so K 1 and K n+1 lie on different sides of
L . ��
Proof of Proposition 4 (by contradiction) Let the collection Y be as in the statement
of the proposition. Under these conditions � is a non-empty n-dimensional simplex
in R

n , with vertices given by the n + 1 affinely independent points {⋂k∈{1,2,...,n+1}\ j

Lk} j=1,2,...,n+1. From Lemma 5 we have that for any arbitrary directional vector v

and plane Lv with Lv∩Int(�) �= ∅:

(∗) for some G j ,Y j ⊂ L−
v

Now, choose some point x that is in the interior of � but that may be beaten by
some rival point x ′ = x + εv where ε > 0 and v ∈ Sn−1. Consider now the plane
Lv with directional vector v that contains x . Since x ′ beats x there lies a majority
of every group inside the open half space, L+

v of Lv and there exist corresponding

majority halfspaces M j+
v which are strict subsets of L+

v (Lemmas 2 and 4). Now, from

the definition of the yolk for each group G j , there exists some point w j in M j
v with

w j ∈ Y j . Since w j is in M j+
v and M j+

v is a subset of L+
v then w j is not in L−

v . Since

for every group j , some point in Y j does not lie in L−
v we have:

(∗∗) for no G j , is Y j ⊂ L−
v

But (∗∗) contradicts (∗) and hence no x ′ beats x∗. ��
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