Design declaration, diagnosis, and redesign

MIDA and more

Graeme Blair, Alex Coppock, Macartan Humphreys

1 DeclareDesign

1.1 Roadmap

  1. The MIDA framework and the declaration-diagnosis-redesign cycle
  2. DeclareDesign: key resources
  3. The Declare-Diagnose-Redesign life cycle
  4. Using designs
  5. Hands-on declaration and diagnosis
  6. Illustration using power calculations
  7. A deeper dive into declaration functionality

1.2 The MIDA Framework

1.2.1 Four elements of any research design

  • Model: set of models of what causes what and how
  • Inquiry: a question stated in terms of the model
  • Data strategy: the set of procedures we use to gather information from the world (sampling, assignment, measurement)
  • Answer strategy: how we summarize the data produced by the data strategy

1.2.2 Four elements of any research design

1.2.3 Declaration

Design declaration is telling the computer (and readers) what M, I, D, and A are.

1.2.4 Diagnosis

  • Design diagnosis is figuring out how the design will perform under imagined conditions.

  • Estimating “diagnosands” like power, bias, rmse, error rates, ethical harm, “amount learned”.

  • Diagnosis takes account of model uncertainty: it aims to identify models for which the design works well and models for which it does not

1.2.5 Redesign

Redesign is the fine-tuning of features of the data- and answer strategies to understand how changing them affects the diagnosands

  • Different sample sizes
  • Different randomization procedures
  • Different estimation strategies
  • Implementation: effort into compliance versus more effort into sample size

1.2.6 Very often you have to simulate!

  • Doing all this is often too hard to work out from rules of thumb or power calculators
  • Specialized formulas exist for some diagnosands, but not all

1.3 DeclareDesign: Overview of key functions and resources

1.3.1 Key commands for making a design

  • declare_model()

  • declare_inquiry()

  • declare_sampling()

  • declare_assignment()

  • declare_measurement()

  • declare_estimator()

and there are more declare_ functions!

1.3.2 Key commands for using a design

  • draw_data(design)
  • draw_estimands(design)
  • draw_estimates(design)
  • get_estimates(design, data)
  • run_design(design), simulate_design(design)
  • diagnose_design(design)
  • redesign(design, N = 200)
  • compare_designs(), compare_diagnoses()

1.3.3 Pipeable commands

design |> 
  redesign(N = c(200, 400)) |>
  diagnose_designs() |> 
  tidy() |> 
  ggplot(...) 

1.3.4 Cheat sheet

https://raw.githubusercontent.com/rstudio/cheatsheets/master/declaredesign.pdf

1.3.5 Other resources

  • The website: https://declaredesign.org/
  • The book: https://book.declaredesign.org
  • The console: ?DeclareDesign

1.4 Design declaration-diagnosis-redesign workflow: Design

1.4.1 The simplest possible (diagnosable) design?

mean <- 0
simplest_design <- 
  declare_model(N = 100, Y = rnorm(N, mean)) +
  declare_inquiry(Q = mean) +
  declare_estimator(Y ~ 1)
  • we draw 100 units from a standard normal distribution
  • we define our inquiry as the population expectation
  • we estimate the average using a regression with a constant term

1.4.2 The simplest possible design?

simplest_design <- 
  declare_model(N = 100, Y = rnorm(N, mean)) +
  declare_inquiry(Q = 0) +
  declare_estimator(Y ~ 1)
  • This design has three steps, with steps connected by a +
  • The design itself is just a list of steps and has class design
str(simplest_design)
List of 3
 $ model    :design_step:    declare_model(N = 100, Y = rnorm(N, mean)) 
 $ Q        :design_step:    declare_inquiry(Q = 0) 
 $ estimator:design_step:    declare_estimator(Y ~ 1) 
 - attr(*, "call")= language construct_design(steps = steps)
 - attr(*, "class")= chr [1:2] "design" "dd"

1.4.3 The simplest possible design? It’s a pipe

Each step is a function (or rather: a function that generates functions) and each function presupposes what is created by previous functions.

  • The ordering of steps is quite important
  • Most steps take the main data frame in and push the main dataframe out; this data frame normally builds up as you move along the pipe.

1.4.4 The simplest possible design? It’s a pipe

Each step is a function (or rather: a function that generates functions) and each function presupposes what is created by previous functions.

  • The ordering of steps is quite important
  • declare_estimator steps take the main data frame in and send out an estimator_df dataframe
  • declare_inquiry steps take the main data frame in and send out an estimand_df dataframe.

1.4.5 The simplest possible design? It’s a pipe

  • You can run these functions one at a time if you like.
  • For instance the third step presupposes the data from the first step:
df <- simplest_design[[1]]()
A  <- simplest_design[[3]](df)

A |> kable(digits = 2) |> kable_styling(font_size = 20)
estimator term estimate std.error statistic p.value conf.low conf.high df outcome
estimator (Intercept) -0.1 0.09 -1.2 0.23 -0.27 0.07 99 Y
Estimand  <- simplest_design[[2]](df)

Estimand |> kable(digits = 2) |> kable_styling(font_size = 20)
inquiry estimand
Q 0

1.4.6 The simplest possible design? Run it once

You can also just run through the whole design once by typing the name of the design:

simplest_design

Research design declaration summary

Step 1 (model): declare_model(N = 100, Y = rnorm(N, mean)) ---------------------

Step 2 (inquiry): declare_inquiry(Q = 0) ---------------------------------------

Step 3 (estimator): declare_estimator(Y ~ 1) -----------------------------------

Run of the design:

 inquiry estimand estimator        term estimate std.error statistic p.value
       Q        0 estimator (Intercept)  0.00249    0.0916    0.0272   0.978
 conf.low conf.high df outcome
   -0.179     0.184 99       Y

1.4.7 The simplest possible design? Run it again

Or by asking for a run of the design

one_run <- simplest_design |> run_design()
one_run |> kable(digits = 2) |> kable_styling(font_size = 18)
inquiry estimand estimator term estimate std.error statistic p.value conf.low conf.high df outcome
Q 0 estimator (Intercept) 0 0.09 -0.03 0.97 -0.18 0.18 99 Y

A single run creates data, calculates estimands (the answer to inquiries) and calculates estimates plus ancillary statistics.

1.4.8 The simplest possible design?: Simulation

Or by asking for a run of the design

some_runs <- simplest_design |> simulate_design(sims = 1000)
some_runs |> kable(digits = 2) |> kable_styling(font_size = 16)
design sim_ID inquiry estimand estimator term estimate std.error statistic p.value conf.low conf.high df outcome
simplest_design 1 Q 0 estimator (Intercept) 0.01 0.09 0.16 0.88 -0.17 0.20 99 Y
simplest_design 2 Q 0 estimator (Intercept) 0.15 0.09 1.65 0.10 -0.03 0.33 99 Y
simplest_design 3 Q 0 estimator (Intercept) -0.20 0.11 -1.91 0.06 -0.41 0.01 99 Y
simplest_design 4 Q 0 estimator (Intercept) -0.08 0.11 -0.74 0.46 -0.30 0.14 99 Y
simplest_design 5 Q 0 estimator (Intercept) -0.14 0.10 -1.36 0.18 -0.34 0.06 99 Y
simplest_design 6 Q 0 estimator (Intercept) -0.10 0.09 -1.19 0.24 -0.28 0.07 99 Y
simplest_design 7 Q 0 estimator (Intercept) 0.12 0.10 1.19 0.24 -0.08 0.31 99 Y
simplest_design 8 Q 0 estimator (Intercept) 0.05 0.09 0.50 0.62 -0.14 0.23 99 Y
simplest_design 9 Q 0 estimator (Intercept) -0.04 0.11 -0.38 0.71 -0.26 0.18 99 Y
simplest_design 10 Q 0 estimator (Intercept) 0.05 0.09 0.58 0.56 -0.13 0.24 99 Y
simplest_design 11 Q 0 estimator (Intercept) -0.17 0.11 -1.56 0.12 -0.39 0.05 99 Y
simplest_design 12 Q 0 estimator (Intercept) 0.01 0.09 0.10 0.92 -0.17 0.19 99 Y
simplest_design 13 Q 0 estimator (Intercept) 0.10 0.09 1.19 0.24 -0.07 0.28 99 Y
simplest_design 14 Q 0 estimator (Intercept) 0.00 0.10 0.04 0.97 -0.19 0.20 99 Y
simplest_design 15 Q 0 estimator (Intercept) 0.11 0.09 1.18 0.24 -0.08 0.30 99 Y
simplest_design 16 Q 0 estimator (Intercept) -0.10 0.12 -0.85 0.40 -0.33 0.13 99 Y
simplest_design 17 Q 0 estimator (Intercept) -0.21 0.10 -2.08 0.04 -0.41 -0.01 99 Y
simplest_design 18 Q 0 estimator (Intercept) -0.05 0.11 -0.42 0.68 -0.26 0.17 99 Y
simplest_design 19 Q 0 estimator (Intercept) -0.09 0.11 -0.82 0.42 -0.31 0.13 99 Y
simplest_design 20 Q 0 estimator (Intercept) -0.02 0.10 -0.20 0.84 -0.23 0.19 99 Y
simplest_design 21 Q 0 estimator (Intercept) 0.04 0.10 0.37 0.71 -0.16 0.23 99 Y
simplest_design 22 Q 0 estimator (Intercept) 0.11 0.09 1.12 0.26 -0.08 0.29 99 Y
simplest_design 23 Q 0 estimator (Intercept) 0.00 0.10 -0.04 0.97 -0.20 0.20 99 Y
simplest_design 24 Q 0 estimator (Intercept) 0.09 0.11 0.84 0.40 -0.12 0.30 99 Y
simplest_design 25 Q 0 estimator (Intercept) 0.00 0.10 -0.02 0.98 -0.21 0.21 99 Y
simplest_design 26 Q 0 estimator (Intercept) -0.08 0.09 -0.79 0.43 -0.26 0.11 99 Y
simplest_design 27 Q 0 estimator (Intercept) -0.11 0.10 -1.13 0.26 -0.30 0.08 99 Y
simplest_design 28 Q 0 estimator (Intercept) -0.06 0.11 -0.59 0.56 -0.28 0.15 99 Y
simplest_design 29 Q 0 estimator (Intercept) -0.07 0.10 -0.73 0.47 -0.27 0.12 99 Y
simplest_design 30 Q 0 estimator (Intercept) -0.13 0.09 -1.41 0.16 -0.31 0.05 99 Y
simplest_design 31 Q 0 estimator (Intercept) -0.08 0.10 -0.88 0.38 -0.27 0.11 99 Y
simplest_design 32 Q 0 estimator (Intercept) 0.03 0.10 0.25 0.80 -0.18 0.23 99 Y
simplest_design 33 Q 0 estimator (Intercept) 0.00 0.10 0.02 0.98 -0.19 0.19 99 Y
simplest_design 34 Q 0 estimator (Intercept) 0.06 0.11 0.59 0.56 -0.15 0.27 99 Y
simplest_design 35 Q 0 estimator (Intercept) -0.16 0.10 -1.56 0.12 -0.36 0.04 99 Y
simplest_design 36 Q 0 estimator (Intercept) 0.21 0.11 1.95 0.05 0.00 0.43 99 Y
simplest_design 37 Q 0 estimator (Intercept) 0.04 0.10 0.44 0.66 -0.15 0.23 99 Y
simplest_design 38 Q 0 estimator (Intercept) 0.02 0.09 0.20 0.84 -0.17 0.20 99 Y
simplest_design 39 Q 0 estimator (Intercept) -0.20 0.10 -2.02 0.05 -0.40 0.00 99 Y
simplest_design 40 Q 0 estimator (Intercept) 0.17 0.10 1.76 0.08 -0.02 0.36 99 Y
simplest_design 41 Q 0 estimator (Intercept) -0.10 0.10 -1.07 0.29 -0.29 0.09 99 Y
simplest_design 42 Q 0 estimator (Intercept) -0.08 0.11 -0.78 0.44 -0.30 0.13 99 Y
simplest_design 43 Q 0 estimator (Intercept) 0.05 0.09 0.53 0.60 -0.13 0.23 99 Y
simplest_design 44 Q 0 estimator (Intercept) 0.10 0.10 1.08 0.28 -0.09 0.30 99 Y
simplest_design 45 Q 0 estimator (Intercept) -0.06 0.11 -0.49 0.63 -0.28 0.17 99 Y
simplest_design 46 Q 0 estimator (Intercept) -0.04 0.10 -0.34 0.73 -0.24 0.17 99 Y
simplest_design 47 Q 0 estimator (Intercept) 0.00 0.09 -0.04 0.97 -0.19 0.18 99 Y
simplest_design 48 Q 0 estimator (Intercept) 0.12 0.09 1.27 0.21 -0.07 0.31 99 Y
simplest_design 49 Q 0 estimator (Intercept) -0.04 0.10 -0.35 0.73 -0.24 0.17 99 Y
simplest_design 50 Q 0 estimator (Intercept) 0.11 0.09 1.21 0.23 -0.07 0.30 99 Y
simplest_design 51 Q 0 estimator (Intercept) 0.13 0.11 1.17 0.24 -0.09 0.34 99 Y
simplest_design 52 Q 0 estimator (Intercept) -0.01 0.10 -0.13 0.90 -0.21 0.19 99 Y
simplest_design 53 Q 0 estimator (Intercept) 0.16 0.10 1.69 0.09 -0.03 0.35 99 Y
simplest_design 54 Q 0 estimator (Intercept) 0.14 0.10 1.47 0.14 -0.05 0.33 99 Y
simplest_design 55 Q 0 estimator (Intercept) -0.16 0.10 -1.57 0.12 -0.37 0.04 99 Y
simplest_design 56 Q 0 estimator (Intercept) -0.09 0.09 -1.07 0.29 -0.27 0.08 99 Y
simplest_design 57 Q 0 estimator (Intercept) -0.05 0.11 -0.48 0.63 -0.26 0.16 99 Y
simplest_design 58 Q 0 estimator (Intercept) -0.10 0.11 -0.94 0.35 -0.32 0.11 99 Y
simplest_design 59 Q 0 estimator (Intercept) -0.06 0.10 -0.58 0.56 -0.24 0.13 99 Y
simplest_design 60 Q 0 estimator (Intercept) -0.08 0.10 -0.83 0.41 -0.28 0.11 99 Y
simplest_design 61 Q 0 estimator (Intercept) -0.16 0.10 -1.59 0.11 -0.36 0.04 99 Y
simplest_design 62 Q 0 estimator (Intercept) 0.11 0.10 1.09 0.28 -0.09 0.31 99 Y
simplest_design 63 Q 0 estimator (Intercept) 0.07 0.10 0.75 0.46 -0.12 0.26 99 Y
simplest_design 64 Q 0 estimator (Intercept) 0.01 0.09 0.09 0.93 -0.17 0.19 99 Y
simplest_design 65 Q 0 estimator (Intercept) 0.02 0.09 0.17 0.87 -0.16 0.19 99 Y
simplest_design 66 Q 0 estimator (Intercept) 0.04 0.10 0.45 0.65 -0.15 0.23 99 Y
simplest_design 67 Q 0 estimator (Intercept) -0.09 0.09 -0.99 0.32 -0.26 0.09 99 Y
simplest_design 68 Q 0 estimator (Intercept) -0.03 0.09 -0.35 0.73 -0.21 0.15 99 Y
simplest_design 69 Q 0 estimator (Intercept) -0.10 0.09 -1.17 0.25 -0.27 0.07 99 Y
simplest_design 70 Q 0 estimator (Intercept) 0.04 0.10 0.34 0.73 -0.17 0.24 99 Y
simplest_design 71 Q 0 estimator (Intercept) 0.10 0.10 0.99 0.32 -0.10 0.31 99 Y
simplest_design 72 Q 0 estimator (Intercept) 0.02 0.11 0.21 0.84 -0.19 0.23 99 Y
simplest_design 73 Q 0 estimator (Intercept) 0.00 0.10 -0.05 0.96 -0.20 0.19 99 Y
simplest_design 74 Q 0 estimator (Intercept) 0.01 0.11 0.05 0.96 -0.22 0.23 99 Y
simplest_design 75 Q 0 estimator (Intercept) 0.06 0.11 0.50 0.61 -0.17 0.28 99 Y
simplest_design 76 Q 0 estimator (Intercept) 0.12 0.09 1.26 0.21 -0.07 0.30 99 Y
simplest_design 77 Q 0 estimator (Intercept) -0.25 0.11 -2.30 0.02 -0.47 -0.04 99 Y
simplest_design 78 Q 0 estimator (Intercept) 0.01 0.09 0.13 0.89 -0.16 0.19 99 Y
simplest_design 79 Q 0 estimator (Intercept) -0.07 0.10 -0.74 0.46 -0.27 0.12 99 Y
simplest_design 80 Q 0 estimator (Intercept) 0.05 0.09 0.60 0.55 -0.13 0.24 99 Y
simplest_design 81 Q 0 estimator (Intercept) -0.03 0.12 -0.22 0.83 -0.26 0.21 99 Y
simplest_design 82 Q 0 estimator (Intercept) -0.05 0.09 -0.59 0.56 -0.23 0.12 99 Y
simplest_design 83 Q 0 estimator (Intercept) -0.17 0.10 -1.60 0.11 -0.37 0.04 99 Y
simplest_design 84 Q 0 estimator (Intercept) 0.13 0.10 1.34 0.18 -0.06 0.32 99 Y
simplest_design 85 Q 0 estimator (Intercept) -0.13 0.10 -1.32 0.19 -0.32 0.06 99 Y
simplest_design 86 Q 0 estimator (Intercept) -0.08 0.10 -0.86 0.39 -0.28 0.11 99 Y
simplest_design 87 Q 0 estimator (Intercept) -0.04 0.10 -0.43 0.67 -0.25 0.16 99 Y
simplest_design 88 Q 0 estimator (Intercept) -0.12 0.11 -1.06 0.29 -0.33 0.10 99 Y
simplest_design 89 Q 0 estimator (Intercept) -0.18 0.10 -1.79 0.08 -0.39 0.02 99 Y
simplest_design 90 Q 0 estimator (Intercept) 0.00 0.10 -0.03 0.98 -0.20 0.20 99 Y
simplest_design 91 Q 0 estimator (Intercept) 0.01 0.09 0.11 0.91 -0.17 0.19 99 Y
simplest_design 92 Q 0 estimator (Intercept) -0.18 0.10 -1.82 0.07 -0.39 0.02 99 Y
simplest_design 93 Q 0 estimator (Intercept) 0.00 0.10 0.05 0.96 -0.20 0.21 99 Y
simplest_design 94 Q 0 estimator (Intercept) 0.02 0.10 0.15 0.88 -0.19 0.22 99 Y
simplest_design 95 Q 0 estimator (Intercept) 0.13 0.10 1.27 0.21 -0.07 0.34 99 Y
simplest_design 96 Q 0 estimator (Intercept) 0.09 0.10 0.98 0.33 -0.10 0.28 99 Y
simplest_design 97 Q 0 estimator (Intercept) -0.08 0.10 -0.79 0.43 -0.28 0.12 99 Y
simplest_design 98 Q 0 estimator (Intercept) 0.16 0.10 1.61 0.11 -0.04 0.35 99 Y
simplest_design 99 Q 0 estimator (Intercept) 0.34 0.10 3.50 0.00 0.15 0.54 99 Y
simplest_design 100 Q 0 estimator (Intercept) 0.18 0.10 1.71 0.09 -0.03 0.39 99 Y
simplest_design 101 Q 0 estimator (Intercept) 0.06 0.10 0.65 0.51 -0.13 0.25 99 Y
simplest_design 102 Q 0 estimator (Intercept) -0.09 0.10 -0.94 0.35 -0.29 0.11 99 Y
simplest_design 103 Q 0 estimator (Intercept) -0.20 0.11 -1.91 0.06 -0.41 0.01 99 Y
simplest_design 104 Q 0 estimator (Intercept) -0.02 0.10 -0.23 0.82 -0.22 0.18 99 Y
simplest_design 105 Q 0 estimator (Intercept) -0.01 0.11 -0.08 0.94 -0.22 0.20 99 Y
simplest_design 106 Q 0 estimator (Intercept) 0.07 0.09 0.82 0.41 -0.10 0.25 99 Y
simplest_design 107 Q 0 estimator (Intercept) -0.13 0.09 -1.34 0.18 -0.31 0.06 99 Y
simplest_design 108 Q 0 estimator (Intercept) -0.16 0.10 -1.60 0.11 -0.36 0.04 99 Y
simplest_design 109 Q 0 estimator (Intercept) 0.26 0.09 2.99 0.00 0.09 0.43 99 Y
simplest_design 110 Q 0 estimator (Intercept) 0.10 0.10 0.92 0.36 -0.11 0.30 99 Y
simplest_design 111 Q 0 estimator (Intercept) -0.18 0.10 -1.78 0.08 -0.37 0.02 99 Y
simplest_design 112 Q 0 estimator (Intercept) -0.06 0.10 -0.59 0.56 -0.26 0.14 99 Y
simplest_design 113 Q 0 estimator (Intercept) -0.05 0.10 -0.51 0.61 -0.25 0.15 99 Y
simplest_design 114 Q 0 estimator (Intercept) 0.06 0.09 0.61 0.55 -0.13 0.24 99 Y
simplest_design 115 Q 0 estimator (Intercept) -0.08 0.10 -0.80 0.43 -0.27 0.12 99 Y
simplest_design 116 Q 0 estimator (Intercept) 0.07 0.10 0.71 0.48 -0.13 0.28 99 Y
simplest_design 117 Q 0 estimator (Intercept) -0.03 0.11 -0.29 0.77 -0.24 0.18 99 Y
simplest_design 118 Q 0 estimator (Intercept) -0.07 0.09 -0.71 0.48 -0.25 0.12 99 Y
simplest_design 119 Q 0 estimator (Intercept) -0.04 0.10 -0.42 0.68 -0.25 0.16 99 Y
simplest_design 120 Q 0 estimator (Intercept) -0.20 0.10 -1.89 0.06 -0.41 0.01 99 Y
simplest_design 121 Q 0 estimator (Intercept) 0.06 0.09 0.69 0.49 -0.11 0.23 99 Y
simplest_design 122 Q 0 estimator (Intercept) 0.23 0.10 2.25 0.03 0.03 0.43 99 Y
simplest_design 123 Q 0 estimator (Intercept) -0.02 0.10 -0.20 0.85 -0.21 0.17 99 Y
simplest_design 124 Q 0 estimator (Intercept) 0.11 0.10 1.13 0.26 -0.08 0.30 99 Y
simplest_design 125 Q 0 estimator (Intercept) -0.08 0.10 -0.81 0.42 -0.27 0.12 99 Y
simplest_design 126 Q 0 estimator (Intercept) -0.03 0.10 -0.31 0.76 -0.22 0.16 99 Y
simplest_design 127 Q 0 estimator (Intercept) 0.02 0.12 0.16 0.87 -0.21 0.25 99 Y
simplest_design 128 Q 0 estimator (Intercept) 0.09 0.09 1.03 0.31 -0.09 0.28 99 Y
simplest_design 129 Q 0 estimator (Intercept) 0.21 0.10 2.19 0.03 0.02 0.40 99 Y
simplest_design 130 Q 0 estimator (Intercept) -0.05 0.10 -0.50 0.62 -0.24 0.15 99 Y
simplest_design 131 Q 0 estimator (Intercept) -0.05 0.10 -0.50 0.61 -0.25 0.15 99 Y
simplest_design 132 Q 0 estimator (Intercept) -0.06 0.10 -0.61 0.54 -0.26 0.14 99 Y
simplest_design 133 Q 0 estimator (Intercept) -0.06 0.09 -0.66 0.51 -0.25 0.12 99 Y
simplest_design 134 Q 0 estimator (Intercept) -0.08 0.10 -0.88 0.38 -0.27 0.10 99 Y
simplest_design 135 Q 0 estimator (Intercept) -0.15 0.11 -1.39 0.17 -0.36 0.06 99 Y
simplest_design 136 Q 0 estimator (Intercept) -0.10 0.09 -1.08 0.28 -0.28 0.08 99 Y
simplest_design 137 Q 0 estimator (Intercept) -0.04 0.09 -0.48 0.64 -0.23 0.14 99 Y
simplest_design 138 Q 0 estimator (Intercept) 0.07 0.10 0.76 0.45 -0.12 0.26 99 Y
simplest_design 139 Q 0 estimator (Intercept) -0.12 0.10 -1.15 0.25 -0.32 0.08 99 Y
simplest_design 140 Q 0 estimator (Intercept) -0.13 0.10 -1.29 0.20 -0.34 0.07 99 Y
simplest_design 141 Q 0 estimator (Intercept) -0.08 0.11 -0.75 0.45 -0.29 0.13 99 Y
simplest_design 142 Q 0 estimator (Intercept) -0.02 0.11 -0.20 0.84 -0.24 0.20 99 Y
simplest_design 143 Q 0 estimator (Intercept) 0.02 0.10 0.23 0.82 -0.17 0.21 99 Y
simplest_design 144 Q 0 estimator (Intercept) 0.07 0.10 0.66 0.51 -0.13 0.27 99 Y
simplest_design 145 Q 0 estimator (Intercept) -0.09 0.10 -0.94 0.35 -0.29 0.10 99 Y
simplest_design 146 Q 0 estimator (Intercept) -0.08 0.09 -0.83 0.41 -0.27 0.11 99 Y
simplest_design 147 Q 0 estimator (Intercept) 0.06 0.10 0.60 0.55 -0.14 0.27 99 Y
simplest_design 148 Q 0 estimator (Intercept) -0.10 0.09 -1.08 0.28 -0.28 0.08 99 Y
simplest_design 149 Q 0 estimator (Intercept) 0.10 0.11 0.91 0.37 -0.12 0.32 99 Y
simplest_design 150 Q 0 estimator (Intercept) -0.02 0.10 -0.24 0.81 -0.21 0.17 99 Y
simplest_design 151 Q 0 estimator (Intercept) -0.08 0.11 -0.70 0.49 -0.29 0.14 99 Y
simplest_design 152 Q 0 estimator (Intercept) 0.15 0.10 1.46 0.15 -0.06 0.36 99 Y
simplest_design 153 Q 0 estimator (Intercept) -0.12 0.10 -1.23 0.22 -0.32 0.08 99 Y
simplest_design 154 Q 0 estimator (Intercept) 0.06 0.09 0.69 0.49 -0.12 0.24 99 Y
simplest_design 155 Q 0 estimator (Intercept) 0.06 0.10 0.63 0.53 -0.14 0.26 99 Y
simplest_design 156 Q 0 estimator (Intercept) -0.08 0.09 -0.96 0.34 -0.26 0.09 99 Y
simplest_design 157 Q 0 estimator (Intercept) 0.07 0.10 0.70 0.49 -0.13 0.28 99 Y
simplest_design 158 Q 0 estimator (Intercept) 0.02 0.11 0.21 0.83 -0.20 0.25 99 Y
simplest_design 159 Q 0 estimator (Intercept) 0.03 0.10 0.33 0.74 -0.17 0.24 99 Y
simplest_design 160 Q 0 estimator (Intercept) 0.02 0.10 0.25 0.80 -0.17 0.22 99 Y
simplest_design 161 Q 0 estimator (Intercept) 0.04 0.10 0.34 0.73 -0.17 0.24 99 Y
simplest_design 162 Q 0 estimator (Intercept) -0.05 0.10 -0.48 0.63 -0.25 0.15 99 Y
simplest_design 163 Q 0 estimator (Intercept) 0.05 0.11 0.47 0.64 -0.16 0.26 99 Y
simplest_design 164 Q 0 estimator (Intercept) 0.03 0.10 0.30 0.76 -0.17 0.23 99 Y
simplest_design 165 Q 0 estimator (Intercept) 0.05 0.11 0.46 0.65 -0.16 0.26 99 Y
simplest_design 166 Q 0 estimator (Intercept) -0.11 0.09 -1.27 0.21 -0.29 0.06 99 Y
simplest_design 167 Q 0 estimator (Intercept) -0.07 0.11 -0.67 0.51 -0.29 0.14 99 Y
simplest_design 168 Q 0 estimator (Intercept) -0.01 0.09 -0.15 0.88 -0.20 0.17 99 Y
simplest_design 169 Q 0 estimator (Intercept) -0.08 0.09 -0.84 0.40 -0.26 0.10 99 Y
simplest_design 170 Q 0 estimator (Intercept) -0.01 0.11 -0.05 0.96 -0.23 0.21 99 Y
simplest_design 171 Q 0 estimator (Intercept) 0.04 0.10 0.46 0.64 -0.15 0.23 99 Y
simplest_design 172 Q 0 estimator (Intercept) -0.09 0.10 -0.84 0.41 -0.29 0.12 99 Y
simplest_design 173 Q 0 estimator (Intercept) 0.04 0.10 0.41 0.68 -0.15 0.23 99 Y
simplest_design 174 Q 0 estimator (Intercept) 0.14 0.11 1.32 0.19 -0.07 0.36 99 Y
simplest_design 175 Q 0 estimator (Intercept) -0.07 0.09 -0.73 0.47 -0.26 0.12 99 Y
simplest_design 176 Q 0 estimator (Intercept) -0.02 0.09 -0.22 0.83 -0.21 0.17 99 Y
simplest_design 177 Q 0 estimator (Intercept) -0.20 0.10 -2.01 0.05 -0.40 0.00 99 Y
simplest_design 178 Q 0 estimator (Intercept) -0.05 0.10 -0.55 0.59 -0.25 0.14 99 Y
simplest_design 179 Q 0 estimator (Intercept) -0.16 0.11 -1.36 0.18 -0.38 0.07 99 Y
simplest_design 180 Q 0 estimator (Intercept) 0.01 0.09 0.09 0.93 -0.16 0.18 99 Y
simplest_design 181 Q 0 estimator (Intercept) 0.15 0.11 1.39 0.17 -0.06 0.36 99 Y
simplest_design 182 Q 0 estimator (Intercept) 0.04 0.10 0.40 0.69 -0.16 0.24 99 Y
simplest_design 183 Q 0 estimator (Intercept) -0.10 0.11 -0.94 0.35 -0.31 0.11 99 Y
simplest_design 184 Q 0 estimator (Intercept) 0.02 0.09 0.19 0.85 -0.17 0.20 99 Y
simplest_design 185 Q 0 estimator (Intercept) 0.06 0.11 0.57 0.57 -0.16 0.29 99 Y
simplest_design 186 Q 0 estimator (Intercept) 0.18 0.09 2.09 0.04 0.01 0.35 99 Y
simplest_design 187 Q 0 estimator (Intercept) -0.15 0.10 -1.47 0.15 -0.35 0.05 99 Y
simplest_design 188 Q 0 estimator (Intercept) -0.05 0.10 -0.52 0.60 -0.26 0.15 99 Y
simplest_design 189 Q 0 estimator (Intercept) 0.13 0.09 1.41 0.16 -0.05 0.31 99 Y
simplest_design 190 Q 0 estimator (Intercept) -0.09 0.10 -0.87 0.39 -0.29 0.12 99 Y
simplest_design 191 Q 0 estimator (Intercept) 0.08 0.11 0.72 0.48 -0.14 0.30 99 Y
simplest_design 192 Q 0 estimator (Intercept) 0.08 0.09 0.82 0.42 -0.11 0.26 99 Y
simplest_design 193 Q 0 estimator (Intercept) 0.01 0.10 0.14 0.89 -0.18 0.20 99 Y
simplest_design 194 Q 0 estimator (Intercept) 0.11 0.10 1.06 0.29 -0.09 0.31 99 Y
simplest_design 195 Q 0 estimator (Intercept) 0.06 0.11 0.55 0.58 -0.15 0.27 99 Y
simplest_design 196 Q 0 estimator (Intercept) 0.12 0.10 1.21 0.23 -0.08 0.32 99 Y
simplest_design 197 Q 0 estimator (Intercept) -0.05 0.11 -0.49 0.63 -0.27 0.16 99 Y
simplest_design 198 Q 0 estimator (Intercept) 0.02 0.11 0.15 0.88 -0.20 0.23 99 Y
simplest_design 199 Q 0 estimator (Intercept) -0.07 0.09 -0.73 0.47 -0.25 0.11 99 Y
simplest_design 200 Q 0 estimator (Intercept) 0.01 0.09 0.14 0.89 -0.16 0.19 99 Y
simplest_design 201 Q 0 estimator (Intercept) 0.07 0.10 0.67 0.51 -0.13 0.26 99 Y
simplest_design 202 Q 0 estimator (Intercept) -0.08 0.10 -0.77 0.44 -0.27 0.12 99 Y
simplest_design 203 Q 0 estimator (Intercept) 0.12 0.11 1.16 0.25 -0.09 0.34 99 Y
simplest_design 204 Q 0 estimator (Intercept) 0.02 0.10 0.18 0.86 -0.18 0.22 99 Y
simplest_design 205 Q 0 estimator (Intercept) -0.18 0.10 -1.70 0.09 -0.39 0.03 99 Y
simplest_design 206 Q 0 estimator (Intercept) -0.13 0.11 -1.24 0.22 -0.35 0.08 99 Y
simplest_design 207 Q 0 estimator (Intercept) -0.06 0.10 -0.62 0.53 -0.25 0.13 99 Y
simplest_design 208 Q 0 estimator (Intercept) 0.00 0.10 0.01 0.99 -0.19 0.19 99 Y
simplest_design 209 Q 0 estimator (Intercept) 0.00 0.10 -0.05 0.96 -0.21 0.20 99 Y
simplest_design 210 Q 0 estimator (Intercept) -0.02 0.10 -0.17 0.87 -0.21 0.18 99 Y
simplest_design 211 Q 0 estimator (Intercept) -0.08 0.09 -0.89 0.37 -0.27 0.10 99 Y
simplest_design 212 Q 0 estimator (Intercept) -0.17 0.09 -1.77 0.08 -0.35 0.02 99 Y
simplest_design 213 Q 0 estimator (Intercept) -0.10 0.09 -1.12 0.26 -0.29 0.08 99 Y
simplest_design 214 Q 0 estimator (Intercept) 0.16 0.11 1.52 0.13 -0.05 0.37 99 Y
simplest_design 215 Q 0 estimator (Intercept) 0.07 0.10 0.68 0.50 -0.13 0.26 99 Y
simplest_design 216 Q 0 estimator (Intercept) -0.02 0.10 -0.20 0.84 -0.21 0.17 99 Y
simplest_design 217 Q 0 estimator (Intercept) -0.09 0.10 -0.89 0.38 -0.28 0.11 99 Y
simplest_design 218 Q 0 estimator (Intercept) -0.13 0.10 -1.27 0.21 -0.34 0.07 99 Y
simplest_design 219 Q 0 estimator (Intercept) -0.06 0.12 -0.56 0.58 -0.29 0.16 99 Y
simplest_design 220 Q 0 estimator (Intercept) -0.05 0.09 -0.53 0.59 -0.23 0.13 99 Y
simplest_design 221 Q 0 estimator (Intercept) 0.05 0.10 0.49 0.62 -0.14 0.24 99 Y
simplest_design 222 Q 0 estimator (Intercept) 0.01 0.10 0.08 0.94 -0.18 0.20 99 Y
simplest_design 223 Q 0 estimator (Intercept) -0.04 0.10 -0.45 0.65 -0.23 0.15 99 Y
simplest_design 224 Q 0 estimator (Intercept) 0.09 0.09 0.91 0.37 -0.10 0.27 99 Y
simplest_design 225 Q 0 estimator (Intercept) 0.14 0.11 1.26 0.21 -0.08 0.36 99 Y
simplest_design 226 Q 0 estimator (Intercept) -0.07 0.09 -0.79 0.43 -0.26 0.11 99 Y
simplest_design 227 Q 0 estimator (Intercept) -0.18 0.09 -1.94 0.06 -0.37 0.00 99 Y
simplest_design 228 Q 0 estimator (Intercept) -0.07 0.10 -0.73 0.47 -0.27 0.12 99 Y
simplest_design 229 Q 0 estimator (Intercept) 0.07 0.10 0.68 0.50 -0.13 0.26 99 Y
simplest_design 230 Q 0 estimator (Intercept) -0.02 0.10 -0.16 0.87 -0.22 0.19 99 Y
simplest_design 231 Q 0 estimator (Intercept) -0.19 0.10 -1.92 0.06 -0.38 0.01 99 Y
simplest_design 232 Q 0 estimator (Intercept) -0.01 0.10 -0.08 0.94 -0.21 0.19 99 Y
simplest_design 233 Q 0 estimator (Intercept) 0.01 0.10 0.14 0.89 -0.18 0.20 99 Y
simplest_design 234 Q 0 estimator (Intercept) 0.08 0.11 0.75 0.45 -0.13 0.30 99 Y
simplest_design 235 Q 0 estimator (Intercept) -0.11 0.11 -1.03 0.30 -0.32 0.10 99 Y
simplest_design 236 Q 0 estimator (Intercept) 0.01 0.11 0.05 0.96 -0.21 0.22 99 Y
simplest_design 237 Q 0 estimator (Intercept) 0.10 0.10 0.96 0.34 -0.10 0.29 99 Y
simplest_design 238 Q 0 estimator (Intercept) 0.02 0.10 0.21 0.84 -0.17 0.21 99 Y
simplest_design 239 Q 0 estimator (Intercept) 0.07 0.10 0.67 0.50 -0.13 0.26 99 Y
simplest_design 240 Q 0 estimator (Intercept) -0.04 0.11 -0.37 0.71 -0.25 0.17 99 Y
simplest_design 241 Q 0 estimator (Intercept) -0.02 0.10 -0.23 0.82 -0.21 0.17 99 Y
simplest_design 242 Q 0 estimator (Intercept) 0.14 0.09 1.51 0.14 -0.04 0.32 99 Y
simplest_design 243 Q 0 estimator (Intercept) -0.08 0.10 -0.77 0.45 -0.27 0.12 99 Y
simplest_design 244 Q 0 estimator (Intercept) 0.17 0.10 1.68 0.10 -0.03 0.37 99 Y
simplest_design 245 Q 0 estimator (Intercept) 0.03 0.10 0.31 0.76 -0.17 0.23 99 Y
simplest_design 246 Q 0 estimator (Intercept) 0.13 0.10 1.27 0.21 -0.07 0.32 99 Y
simplest_design 247 Q 0 estimator (Intercept) -0.21 0.10 -2.02 0.05 -0.42 0.00 99 Y
simplest_design 248 Q 0 estimator (Intercept) -0.17 0.10 -1.75 0.08 -0.37 0.02 99 Y
simplest_design 249 Q 0 estimator (Intercept) -0.08 0.12 -0.63 0.53 -0.32 0.17 99 Y
simplest_design 250 Q 0 estimator (Intercept) -0.13 0.10 -1.33 0.19 -0.32 0.06 99 Y
simplest_design 251 Q 0 estimator (Intercept) -0.16 0.09 -1.73 0.09 -0.35 0.02 99 Y
simplest_design 252 Q 0 estimator (Intercept) -0.14 0.09 -1.45 0.15 -0.32 0.05 99 Y
simplest_design 253 Q 0 estimator (Intercept) 0.01 0.11 0.13 0.89 -0.20 0.23 99 Y
simplest_design 254 Q 0 estimator (Intercept) 0.01 0.10 0.06 0.95 -0.20 0.21 99 Y
simplest_design 255 Q 0 estimator (Intercept) 0.05 0.11 0.42 0.67 -0.17 0.26 99 Y
simplest_design 256 Q 0 estimator (Intercept) 0.08 0.09 0.89 0.37 -0.10 0.27 99 Y
simplest_design 257 Q 0 estimator (Intercept) -0.15 0.10 -1.48 0.14 -0.36 0.05 99 Y
simplest_design 258 Q 0 estimator (Intercept) -0.04 0.12 -0.38 0.71 -0.28 0.19 99 Y
simplest_design 259 Q 0 estimator (Intercept) -0.04 0.11 -0.41 0.68 -0.25 0.17 99 Y
simplest_design 260 Q 0 estimator (Intercept) 0.01 0.10 0.10 0.92 -0.19 0.21 99 Y
simplest_design 261 Q 0 estimator (Intercept) 0.05 0.10 0.47 0.64 -0.15 0.25 99 Y
simplest_design 262 Q 0 estimator (Intercept) 0.07 0.09 0.85 0.40 -0.10 0.24 99 Y
simplest_design 263 Q 0 estimator (Intercept) -0.10 0.09 -1.23 0.22 -0.27 0.06 99 Y
simplest_design 264 Q 0 estimator (Intercept) -0.13 0.11 -1.15 0.25 -0.34 0.09 99 Y
simplest_design 265 Q 0 estimator (Intercept) 0.01 0.09 0.10 0.92 -0.18 0.20 99 Y
simplest_design 266 Q 0 estimator (Intercept) -0.01 0.10 -0.07 0.94 -0.21 0.19 99 Y
simplest_design 267 Q 0 estimator (Intercept) 0.06 0.08 0.74 0.46 -0.10 0.22 99 Y
simplest_design 268 Q 0 estimator (Intercept) 0.07 0.10 0.74 0.46 -0.13 0.28 99 Y
simplest_design 269 Q 0 estimator (Intercept) 0.09 0.11 0.81 0.42 -0.13 0.31 99 Y
simplest_design 270 Q 0 estimator (Intercept) 0.01 0.11 0.13 0.90 -0.20 0.22 99 Y
simplest_design 271 Q 0 estimator (Intercept) 0.01 0.11 0.10 0.92 -0.20 0.22 99 Y
simplest_design 272 Q 0 estimator (Intercept) -0.13 0.10 -1.28 0.20 -0.32 0.07 99 Y
simplest_design 273 Q 0 estimator (Intercept) 0.07 0.08 0.94 0.35 -0.08 0.23 99 Y
simplest_design 274 Q 0 estimator (Intercept) 0.07 0.11 0.68 0.50 -0.14 0.28 99 Y
simplest_design 275 Q 0 estimator (Intercept) 0.09 0.10 0.86 0.39 -0.11 0.28 99 Y
simplest_design 276 Q 0 estimator (Intercept) 0.12 0.10 1.18 0.24 -0.08 0.33 99 Y
simplest_design 277 Q 0 estimator (Intercept) -0.02 0.09 -0.20 0.85 -0.20 0.17 99 Y
simplest_design 278 Q 0 estimator (Intercept) -0.14 0.09 -1.44 0.15 -0.32 0.05 99 Y
simplest_design 279 Q 0 estimator (Intercept) 0.09 0.09 0.98 0.33 -0.09 0.27 99 Y
simplest_design 280 Q 0 estimator (Intercept) 0.06 0.10 0.59 0.56 -0.14 0.26 99 Y
simplest_design 281 Q 0 estimator (Intercept) -0.02 0.09 -0.25 0.81 -0.20 0.16 99 Y
simplest_design 282 Q 0 estimator (Intercept) 0.02 0.10 0.22 0.83 -0.18 0.22 99 Y
simplest_design 283 Q 0 estimator (Intercept) 0.00 0.10 0.02 0.99 -0.19 0.19 99 Y
simplest_design 284 Q 0 estimator (Intercept) -0.03 0.09 -0.34 0.74 -0.22 0.15 99 Y
simplest_design 285 Q 0 estimator (Intercept) 0.20 0.09 2.17 0.03 0.02 0.38 99 Y
simplest_design 286 Q 0 estimator (Intercept) -0.07 0.10 -0.66 0.51 -0.27 0.14 99 Y
simplest_design 287 Q 0 estimator (Intercept) 0.07 0.09 0.74 0.46 -0.11 0.25 99 Y
simplest_design 288 Q 0 estimator (Intercept) 0.06 0.09 0.63 0.53 -0.13 0.24 99 Y
simplest_design 289 Q 0 estimator (Intercept) 0.12 0.10 1.20 0.23 -0.08 0.31 99 Y
simplest_design 290 Q 0 estimator (Intercept) -0.04 0.09 -0.46 0.65 -0.21 0.13 99 Y
simplest_design 291 Q 0 estimator (Intercept) -0.18 0.10 -1.91 0.06 -0.37 0.01 99 Y
simplest_design 292 Q 0 estimator (Intercept) -0.02 0.11 -0.16 0.87 -0.23 0.20 99 Y
simplest_design 293 Q 0 estimator (Intercept) 0.05 0.11 0.48 0.63 -0.16 0.27 99 Y
simplest_design 294 Q 0 estimator (Intercept) 0.19 0.11 1.72 0.09 -0.03 0.40 99 Y
simplest_design 295 Q 0 estimator (Intercept) 0.05 0.09 0.55 0.59 -0.13 0.23 99 Y
simplest_design 296 Q 0 estimator (Intercept) -0.04 0.10 -0.39 0.70 -0.24 0.16 99 Y
simplest_design 297 Q 0 estimator (Intercept) -0.09 0.10 -0.98 0.33 -0.28 0.10 99 Y
simplest_design 298 Q 0 estimator (Intercept) -0.05 0.10 -0.47 0.64 -0.25 0.15 99 Y
simplest_design 299 Q 0 estimator (Intercept) 0.09 0.10 0.97 0.34 -0.10 0.29 99 Y
simplest_design 300 Q 0 estimator (Intercept) -0.24 0.09 -2.66 0.01 -0.42 -0.06 99 Y
simplest_design 301 Q 0 estimator (Intercept) -0.25 0.10 -2.50 0.01 -0.44 -0.05 99 Y
simplest_design 302 Q 0 estimator (Intercept) 0.00 0.10 -0.04 0.97 -0.19 0.18 99 Y
simplest_design 303 Q 0 estimator (Intercept) -0.05 0.10 -0.44 0.66 -0.25 0.16 99 Y
simplest_design 304 Q 0 estimator (Intercept) -0.07 0.10 -0.74 0.46 -0.27 0.12 99 Y
simplest_design 305 Q 0 estimator (Intercept) 0.02 0.09 0.25 0.81 -0.15 0.20 99 Y
simplest_design 306 Q 0 estimator (Intercept) 0.05 0.10 0.54 0.59 -0.14 0.25 99 Y
simplest_design 307 Q 0 estimator (Intercept) -0.17 0.10 -1.83 0.07 -0.36 0.02 99 Y
simplest_design 308 Q 0 estimator (Intercept) 0.01 0.10 0.11 0.91 -0.19 0.22 99 Y
simplest_design 309 Q 0 estimator (Intercept) -0.11 0.10 -1.06 0.29 -0.30 0.09 99 Y
simplest_design 310 Q 0 estimator (Intercept) 0.15 0.10 1.50 0.14 -0.05 0.35 99 Y
simplest_design 311 Q 0 estimator (Intercept) 0.15 0.09 1.68 0.10 -0.03 0.34 99 Y
simplest_design 312 Q 0 estimator (Intercept) 0.11 0.09 1.17 0.24 -0.08 0.30 99 Y
simplest_design 313 Q 0 estimator (Intercept) 0.17 0.10 1.73 0.09 -0.02 0.37 99 Y
simplest_design 314 Q 0 estimator (Intercept) 0.09 0.10 0.91 0.37 -0.11 0.28 99 Y
simplest_design 315 Q 0 estimator (Intercept) -0.30 0.09 -3.21 0.00 -0.49 -0.12 99 Y
simplest_design 316 Q 0 estimator (Intercept) -0.14 0.11 -1.29 0.20 -0.36 0.08 99 Y
simplest_design 317 Q 0 estimator (Intercept) -0.13 0.10 -1.34 0.18 -0.33 0.06 99 Y
simplest_design 318 Q 0 estimator (Intercept) -0.07 0.09 -0.75 0.46 -0.24 0.11 99 Y
simplest_design 319 Q 0 estimator (Intercept) 0.18 0.10 1.86 0.07 -0.01 0.38 99 Y
simplest_design 320 Q 0 estimator (Intercept) 0.11 0.11 1.04 0.30 -0.10 0.33 99 Y
simplest_design 321 Q 0 estimator (Intercept) 0.04 0.09 0.44 0.66 -0.14 0.23 99 Y
simplest_design 322 Q 0 estimator (Intercept) -0.01 0.10 -0.12 0.90 -0.22 0.19 99 Y
simplest_design 323 Q 0 estimator (Intercept) 0.07 0.10 0.74 0.46 -0.12 0.26 99 Y
simplest_design 324 Q 0 estimator (Intercept) 0.02 0.10 0.16 0.87 -0.19 0.22 99 Y
simplest_design 325 Q 0 estimator (Intercept) 0.12 0.10 1.22 0.23 -0.08 0.32 99 Y
simplest_design 326 Q 0 estimator (Intercept) -0.03 0.11 -0.25 0.81 -0.24 0.18 99 Y
simplest_design 327 Q 0 estimator (Intercept) -0.01 0.09 -0.12 0.90 -0.19 0.17 99 Y
simplest_design 328 Q 0 estimator (Intercept) 0.05 0.11 0.49 0.62 -0.16 0.27 99 Y
simplest_design 329 Q 0 estimator (Intercept) -0.03 0.11 -0.28 0.78 -0.25 0.19 99 Y
simplest_design 330 Q 0 estimator (Intercept) -0.01 0.09 -0.07 0.95 -0.18 0.17 99 Y
simplest_design 331 Q 0 estimator (Intercept) -0.01 0.10 -0.07 0.95 -0.22 0.20 99 Y
simplest_design 332 Q 0 estimator (Intercept) 0.09 0.11 0.83 0.41 -0.12 0.30 99 Y
simplest_design 333 Q 0 estimator (Intercept) 0.17 0.10 1.70 0.09 -0.03 0.38 99 Y
simplest_design 334 Q 0 estimator (Intercept) 0.01 0.11 0.09 0.93 -0.21 0.23 99 Y
simplest_design 335 Q 0 estimator (Intercept) -0.03 0.09 -0.29 0.77 -0.21 0.15 99 Y
simplest_design 336 Q 0 estimator (Intercept) 0.04 0.11 0.40 0.69 -0.17 0.26 99 Y
simplest_design 337 Q 0 estimator (Intercept) -0.01 0.09 -0.10 0.92 -0.18 0.17 99 Y
simplest_design 338 Q 0 estimator (Intercept) 0.08 0.11 0.74 0.46 -0.14 0.30 99 Y
simplest_design 339 Q 0 estimator (Intercept) -0.23 0.10 -2.25 0.03 -0.44 -0.03 99 Y
simplest_design 340 Q 0 estimator (Intercept) 0.08 0.10 0.76 0.45 -0.12 0.28 99 Y
simplest_design 341 Q 0 estimator (Intercept) 0.07 0.09 0.79 0.43 -0.11 0.25 99 Y
simplest_design 342 Q 0 estimator (Intercept) -0.11 0.08 -1.36 0.18 -0.28 0.05 99 Y
simplest_design 343 Q 0 estimator (Intercept) -0.04 0.10 -0.44 0.66 -0.24 0.15 99 Y
simplest_design 344 Q 0 estimator (Intercept) -0.08 0.10 -0.79 0.43 -0.28 0.12 99 Y
simplest_design 345 Q 0 estimator (Intercept) 0.23 0.12 1.95 0.05 0.00 0.47 99 Y
simplest_design 346 Q 0 estimator (Intercept) 0.01 0.10 0.06 0.95 -0.18 0.20 99 Y
simplest_design 347 Q 0 estimator (Intercept) -0.10 0.10 -0.97 0.33 -0.31 0.10 99 Y
simplest_design 348 Q 0 estimator (Intercept) 0.00 0.09 0.04 0.97 -0.18 0.19 99 Y
simplest_design 349 Q 0 estimator (Intercept) -0.02 0.09 -0.16 0.87 -0.20 0.17 99 Y
simplest_design 350 Q 0 estimator (Intercept) 0.22 0.09 2.35 0.02 0.03 0.41 99 Y
simplest_design 351 Q 0 estimator (Intercept) 0.07 0.10 0.68 0.50 -0.13 0.27 99 Y
simplest_design 352 Q 0 estimator (Intercept) 0.03 0.10 0.28 0.78 -0.18 0.23 99 Y
simplest_design 353 Q 0 estimator (Intercept) 0.05 0.10 0.52 0.60 -0.15 0.26 99 Y
simplest_design 354 Q 0 estimator (Intercept) -0.06 0.09 -0.61 0.54 -0.24 0.13 99 Y
simplest_design 355 Q 0 estimator (Intercept) -0.07 0.10 -0.70 0.49 -0.27 0.13 99 Y
simplest_design 356 Q 0 estimator (Intercept) -0.07 0.10 -0.68 0.50 -0.27 0.13 99 Y
simplest_design 357 Q 0 estimator (Intercept) 0.11 0.10 1.16 0.25 -0.08 0.30 99 Y
simplest_design 358 Q 0 estimator (Intercept) 0.05 0.09 0.54 0.59 -0.14 0.24 99 Y
simplest_design 359 Q 0 estimator (Intercept) 0.23 0.10 2.28 0.02 0.03 0.43 99 Y
simplest_design 360 Q 0 estimator (Intercept) 0.02 0.11 0.21 0.84 -0.19 0.24 99 Y
simplest_design 361 Q 0 estimator (Intercept) -0.03 0.10 -0.30 0.77 -0.24 0.18 99 Y
simplest_design 362 Q 0 estimator (Intercept) -0.02 0.10 -0.15 0.88 -0.22 0.19 99 Y
simplest_design 363 Q 0 estimator (Intercept) 0.03 0.09 0.35 0.73 -0.15 0.21 99 Y
simplest_design 364 Q 0 estimator (Intercept) -0.21 0.09 -2.31 0.02 -0.40 -0.03 99 Y
simplest_design 365 Q 0 estimator (Intercept) 0.02 0.09 0.20 0.84 -0.16 0.19 99 Y
simplest_design 366 Q 0 estimator (Intercept) 0.08 0.10 0.76 0.45 -0.12 0.27 99 Y
simplest_design 367 Q 0 estimator (Intercept) -0.01 0.09 -0.07 0.94 -0.18 0.17 99 Y
simplest_design 368 Q 0 estimator (Intercept) 0.01 0.10 0.08 0.94 -0.19 0.21 99 Y
simplest_design 369 Q 0 estimator (Intercept) -0.02 0.09 -0.19 0.85 -0.19 0.16 99 Y
simplest_design 370 Q 0 estimator (Intercept) 0.00 0.10 0.00 1.00 -0.21 0.21 99 Y
simplest_design 371 Q 0 estimator (Intercept) 0.08 0.09 0.80 0.43 -0.11 0.26 99 Y
simplest_design 372 Q 0 estimator (Intercept) -0.22 0.11 -1.98 0.05 -0.44 0.00 99 Y
simplest_design 373 Q 0 estimator (Intercept) 0.05 0.10 0.44 0.66 -0.16 0.25 99 Y
simplest_design 374 Q 0 estimator (Intercept) 0.15 0.10 1.54 0.13 -0.04 0.34 99 Y
simplest_design 375 Q 0 estimator (Intercept) 0.01 0.09 0.14 0.89 -0.17 0.19 99 Y
simplest_design 376 Q 0 estimator (Intercept) -0.08 0.10 -0.83 0.41 -0.27 0.11 99 Y
simplest_design 377 Q 0 estimator (Intercept) 0.05 0.10 0.48 0.63 -0.15 0.25 99 Y
simplest_design 378 Q 0 estimator (Intercept) -0.06 0.09 -0.64 0.53 -0.24 0.12 99 Y
simplest_design 379 Q 0 estimator (Intercept) 0.09 0.11 0.80 0.43 -0.13 0.30 99 Y
simplest_design 380 Q 0 estimator (Intercept) 0.14 0.09 1.59 0.12 -0.04 0.32 99 Y
simplest_design 381 Q 0 estimator (Intercept) 0.20 0.10 1.97 0.05 0.00 0.40 99 Y
simplest_design 382 Q 0 estimator (Intercept) -0.16 0.10 -1.58 0.12 -0.36 0.04 99 Y
simplest_design 383 Q 0 estimator (Intercept) -0.01 0.10 -0.14 0.89 -0.21 0.18 99 Y
simplest_design 384 Q 0 estimator (Intercept) 0.09 0.11 0.78 0.44 -0.13 0.31 99 Y
simplest_design 385 Q 0 estimator (Intercept) -0.20 0.09 -2.12 0.04 -0.38 -0.01 99 Y
simplest_design 386 Q 0 estimator (Intercept) -0.03 0.10 -0.33 0.74 -0.22 0.16 99 Y
simplest_design 387 Q 0 estimator (Intercept) -0.15 0.11 -1.37 0.17 -0.38 0.07 99 Y
simplest_design 388 Q 0 estimator (Intercept) 0.00 0.09 0.03 0.97 -0.17 0.18 99 Y
simplest_design 389 Q 0 estimator (Intercept) 0.03 0.12 0.23 0.82 -0.21 0.26 99 Y
simplest_design 390 Q 0 estimator (Intercept) 0.06 0.11 0.50 0.62 -0.17 0.29 99 Y
simplest_design 391 Q 0 estimator (Intercept) -0.01 0.10 -0.12 0.90 -0.21 0.19 99 Y
simplest_design 392 Q 0 estimator (Intercept) -0.14 0.08 -1.74 0.09 -0.31 0.02 99 Y
simplest_design 393 Q 0 estimator (Intercept) 0.01 0.10 0.11 0.91 -0.19 0.21 99 Y
simplest_design 394 Q 0 estimator (Intercept) 0.08 0.10 0.73 0.46 -0.13 0.28 99 Y
simplest_design 395 Q 0 estimator (Intercept) 0.06 0.10 0.56 0.58 -0.15 0.26 99 Y
simplest_design 396 Q 0 estimator (Intercept) -0.01 0.10 -0.07 0.94 -0.21 0.20 99 Y
simplest_design 397 Q 0 estimator (Intercept) 0.23 0.11 2.09 0.04 0.01 0.45 99 Y
simplest_design 398 Q 0 estimator (Intercept) -0.02 0.09 -0.21 0.83 -0.21 0.17 99 Y
simplest_design 399 Q 0 estimator (Intercept) -0.09 0.10 -0.85 0.40 -0.29 0.12 99 Y
simplest_design 400 Q 0 estimator (Intercept) -0.05 0.10 -0.48 0.63 -0.24 0.15 99 Y
simplest_design 401 Q 0 estimator (Intercept) 0.03 0.10 0.25 0.80 -0.18 0.23 99 Y
simplest_design 402 Q 0 estimator (Intercept) -0.03 0.10 -0.32 0.75 -0.23 0.17 99 Y
simplest_design 403 Q 0 estimator (Intercept) 0.03 0.11 0.24 0.81 -0.19 0.24 99 Y
simplest_design 404 Q 0 estimator (Intercept) 0.02 0.09 0.24 0.81 -0.16 0.21 99 Y
simplest_design 405 Q 0 estimator (Intercept) 0.08 0.10 0.76 0.45 -0.12 0.28 99 Y
simplest_design 406 Q 0 estimator (Intercept) -0.16 0.10 -1.61 0.11 -0.37 0.04 99 Y
simplest_design 407 Q 0 estimator (Intercept) -0.10 0.09 -1.02 0.31 -0.28 0.09 99 Y
simplest_design 408 Q 0 estimator (Intercept) -0.17 0.09 -1.83 0.07 -0.36 0.01 99 Y
simplest_design 409 Q 0 estimator (Intercept) 0.05 0.10 0.48 0.63 -0.15 0.24 99 Y
simplest_design 410 Q 0 estimator (Intercept) -0.14 0.10 -1.38 0.17 -0.33 0.06 99 Y
simplest_design 411 Q 0 estimator (Intercept) -0.08 0.10 -0.76 0.45 -0.28 0.12 99 Y
simplest_design 412 Q 0 estimator (Intercept) 0.12 0.10 1.18 0.24 -0.08 0.33 99 Y
simplest_design 413 Q 0 estimator (Intercept) 0.10 0.10 0.99 0.32 -0.10 0.29 99 Y
simplest_design 414 Q 0 estimator (Intercept) 0.15 0.10 1.44 0.15 -0.06 0.36 99 Y
simplest_design 415 Q 0 estimator (Intercept) -0.14 0.09 -1.44 0.15 -0.33 0.05 99 Y
simplest_design 416 Q 0 estimator (Intercept) 0.07 0.08 0.85 0.40 -0.09 0.24 99 Y
simplest_design 417 Q 0 estimator (Intercept) 0.08 0.10 0.82 0.42 -0.12 0.29 99 Y
simplest_design 418 Q 0 estimator (Intercept) -0.10 0.10 -1.01 0.32 -0.29 0.09 99 Y
simplest_design 419 Q 0 estimator (Intercept) -0.01 0.09 -0.07 0.95 -0.18 0.17 99 Y
simplest_design 420 Q 0 estimator (Intercept) 0.13 0.09 1.42 0.16 -0.05 0.32 99 Y
simplest_design 421 Q 0 estimator (Intercept) 0.03 0.10 0.26 0.80 -0.18 0.23 99 Y
simplest_design 422 Q 0 estimator (Intercept) -0.09 0.12 -0.73 0.47 -0.32 0.15 99 Y
simplest_design 423 Q 0 estimator (Intercept) -0.16 0.10 -1.57 0.12 -0.35 0.04 99 Y
simplest_design 424 Q 0 estimator (Intercept) 0.14 0.10 1.46 0.15 -0.05 0.33 99 Y
simplest_design 425 Q 0 estimator (Intercept) -0.07 0.10 -0.64 0.52 -0.27 0.14 99 Y
simplest_design 426 Q 0 estimator (Intercept) -0.03 0.09 -0.37 0.71 -0.22 0.15 99 Y
simplest_design 427 Q 0 estimator (Intercept) 0.01 0.10 0.06 0.95 -0.19 0.21 99 Y
simplest_design 428 Q 0 estimator (Intercept) -0.03 0.10 -0.29 0.77 -0.23 0.17 99 Y
simplest_design 429 Q 0 estimator (Intercept) 0.07 0.09 0.82 0.41 -0.10 0.24 99 Y
simplest_design 430 Q 0 estimator (Intercept) 0.15 0.10 1.50 0.14 -0.05 0.35 99 Y
simplest_design 431 Q 0 estimator (Intercept) 0.06 0.10 0.67 0.51 -0.13 0.25 99 Y
simplest_design 432 Q 0 estimator (Intercept) -0.04 0.11 -0.36 0.72 -0.26 0.18 99 Y
simplest_design 433 Q 0 estimator (Intercept) -0.02 0.10 -0.21 0.84 -0.21 0.17 99 Y
simplest_design 434 Q 0 estimator (Intercept) -0.04 0.11 -0.35 0.73 -0.25 0.18 99 Y
simplest_design 435 Q 0 estimator (Intercept) 0.10 0.09 1.05 0.30 -0.09 0.29 99 Y
simplest_design 436 Q 0 estimator (Intercept) 0.03 0.10 0.30 0.77 -0.18 0.24 99 Y
simplest_design 437 Q 0 estimator (Intercept) 0.10 0.10 0.97 0.33 -0.10 0.30 99 Y
simplest_design 438 Q 0 estimator (Intercept) -0.16 0.10 -1.51 0.13 -0.36 0.05 99 Y
simplest_design 439 Q 0 estimator (Intercept) -0.05 0.09 -0.55 0.59 -0.23 0.13 99 Y
simplest_design 440 Q 0 estimator (Intercept) -0.15 0.10 -1.59 0.11 -0.34 0.04 99 Y
simplest_design 441 Q 0 estimator (Intercept) 0.15 0.10 1.51 0.13 -0.05 0.35 99 Y
simplest_design 442 Q 0 estimator (Intercept) -0.02 0.09 -0.22 0.82 -0.19 0.16 99 Y
simplest_design 443 Q 0 estimator (Intercept) -0.22 0.10 -2.20 0.03 -0.42 -0.02 99 Y
simplest_design 444 Q 0 estimator (Intercept) 0.03 0.09 0.31 0.75 -0.16 0.22 99 Y
simplest_design 445 Q 0 estimator (Intercept) 0.08 0.10 0.83 0.41 -0.11 0.28 99 Y
simplest_design 446 Q 0 estimator (Intercept) -0.08 0.11 -0.71 0.48 -0.29 0.14 99 Y
simplest_design 447 Q 0 estimator (Intercept) -0.11 0.10 -1.11 0.27 -0.32 0.09 99 Y
simplest_design 448 Q 0 estimator (Intercept) 0.02 0.10 0.19 0.85 -0.18 0.22 99 Y
simplest_design 449 Q 0 estimator (Intercept) 0.03 0.11 0.31 0.76 -0.18 0.25 99 Y
simplest_design 450 Q 0 estimator (Intercept) -0.05 0.11 -0.49 0.62 -0.26 0.16 99 Y
simplest_design 451 Q 0 estimator (Intercept) 0.01 0.10 0.06 0.95 -0.20 0.21 99 Y
simplest_design 452 Q 0 estimator (Intercept) -0.12 0.10 -1.18 0.24 -0.32 0.08 99 Y
simplest_design 453 Q 0 estimator (Intercept) 0.08 0.10 0.78 0.44 -0.12 0.28 99 Y
simplest_design 454 Q 0 estimator (Intercept) 0.03 0.11 0.26 0.79 -0.18 0.24 99 Y
simplest_design 455 Q 0 estimator (Intercept) 0.03 0.09 0.37 0.72 -0.14 0.20 99 Y
simplest_design 456 Q 0 estimator (Intercept) 0.00 0.09 -0.04 0.97 -0.18 0.18 99 Y
simplest_design 457 Q 0 estimator (Intercept) 0.01 0.09 0.16 0.87 -0.17 0.19 99 Y
simplest_design 458 Q 0 estimator (Intercept) 0.00 0.09 0.04 0.97 -0.18 0.19 99 Y
simplest_design 459 Q 0 estimator (Intercept) -0.02 0.11 -0.20 0.84 -0.23 0.19 99 Y
simplest_design 460 Q 0 estimator (Intercept) -0.04 0.10 -0.37 0.71 -0.23 0.16 99 Y
simplest_design 461 Q 0 estimator (Intercept) 0.03 0.10 0.33 0.74 -0.16 0.23 99 Y
simplest_design 462 Q 0 estimator (Intercept) -0.03 0.10 -0.33 0.74 -0.22 0.16 99 Y
simplest_design 463 Q 0 estimator (Intercept) 0.07 0.11 0.60 0.55 -0.16 0.29 99 Y
simplest_design 464 Q 0 estimator (Intercept) 0.02 0.09 0.17 0.86 -0.17 0.20 99 Y
simplest_design 465 Q 0 estimator (Intercept) 0.21 0.11 1.98 0.05 0.00 0.42 99 Y
simplest_design 466 Q 0 estimator (Intercept) 0.08 0.10 0.80 0.42 -0.12 0.29 99 Y
simplest_design 467 Q 0 estimator (Intercept) 0.04 0.09 0.42 0.68 -0.14 0.21 99 Y
simplest_design 468 Q 0 estimator (Intercept) -0.08 0.10 -0.76 0.45 -0.28 0.12 99 Y
simplest_design 469 Q 0 estimator (Intercept) 0.08 0.11 0.74 0.46 -0.14 0.30 99 Y
simplest_design 470 Q 0 estimator (Intercept) -0.08 0.10 -0.80 0.42 -0.28 0.12 99 Y
simplest_design 471 Q 0 estimator (Intercept) -0.07 0.10 -0.70 0.48 -0.26 0.12 99 Y
simplest_design 472 Q 0 estimator (Intercept) 0.11 0.10 1.09 0.28 -0.09 0.32 99 Y
simplest_design 473 Q 0 estimator (Intercept) 0.12 0.09 1.45 0.15 -0.05 0.30 99 Y
simplest_design 474 Q 0 estimator (Intercept) 0.15 0.10 1.49 0.14 -0.05 0.35 99 Y
simplest_design 475 Q 0 estimator (Intercept) -0.16 0.11 -1.45 0.15 -0.38 0.06 99 Y
simplest_design 476 Q 0 estimator (Intercept) -0.06 0.10 -0.61 0.54 -0.25 0.13 99 Y
simplest_design 477 Q 0 estimator (Intercept) 0.04 0.09 0.46 0.64 -0.14 0.22 99 Y
simplest_design 478 Q 0 estimator (Intercept) 0.02 0.09 0.21 0.83 -0.16 0.20 99 Y
simplest_design 479 Q 0 estimator (Intercept) -0.07 0.10 -0.72 0.48 -0.28 0.13 99 Y
simplest_design 480 Q 0 estimator (Intercept) 0.01 0.09 0.12 0.90 -0.18 0.20 99 Y
simplest_design 481 Q 0 estimator (Intercept) 0.20 0.10 2.09 0.04 0.01 0.39 99 Y
simplest_design 482 Q 0 estimator (Intercept) -0.08 0.10 -0.84 0.40 -0.28 0.11 99 Y
simplest_design 483 Q 0 estimator (Intercept) 0.03 0.10 0.28 0.78 -0.17 0.22 99 Y
simplest_design 484 Q 0 estimator (Intercept) 0.00 0.09 -0.02 0.98 -0.19 0.18 99 Y
simplest_design 485 Q 0 estimator (Intercept) -0.16 0.10 -1.70 0.09 -0.35 0.03 99 Y
simplest_design 486 Q 0 estimator (Intercept) 0.02 0.11 0.15 0.88 -0.19 0.23 99 Y
simplest_design 487 Q 0 estimator (Intercept) 0.11 0.10 1.18 0.24 -0.08 0.31 99 Y
simplest_design 488 Q 0 estimator (Intercept) 0.10 0.10 1.02 0.31 -0.09 0.29 99 Y
simplest_design 489 Q 0 estimator (Intercept) 0.06 0.11 0.59 0.56 -0.15 0.28 99 Y
simplest_design 490 Q 0 estimator (Intercept) 0.05 0.10 0.52 0.60 -0.15 0.26 99 Y
simplest_design 491 Q 0 estimator (Intercept) -0.06 0.09 -0.59 0.55 -0.24 0.13 99 Y
simplest_design 492 Q 0 estimator (Intercept) -0.17 0.10 -1.68 0.10 -0.37 0.03 99 Y
simplest_design 493 Q 0 estimator (Intercept) -0.10 0.09 -1.14 0.26 -0.29 0.08 99 Y
simplest_design 494 Q 0 estimator (Intercept) -0.06 0.11 -0.53 0.60 -0.27 0.16 99 Y
simplest_design 495 Q 0 estimator (Intercept) 0.15 0.10 1.54 0.13 -0.04 0.35 99 Y
simplest_design 496 Q 0 estimator (Intercept) -0.11 0.10 -1.12 0.27 -0.31 0.09 99 Y
simplest_design 497 Q 0 estimator (Intercept) 0.10 0.11 0.94 0.35 -0.12 0.32 99 Y
simplest_design 498 Q 0 estimator (Intercept) 0.09 0.09 1.06 0.29 -0.08 0.27 99 Y
simplest_design 499 Q 0 estimator (Intercept) -0.16 0.09 -1.82 0.07 -0.33 0.01 99 Y
simplest_design 500 Q 0 estimator (Intercept) 0.11 0.10 1.08 0.28 -0.09 0.30 99 Y
simplest_design 501 Q 0 estimator (Intercept) 0.02 0.11 0.22 0.83 -0.20 0.24 99 Y
simplest_design 502 Q 0 estimator (Intercept) 0.04 0.10 0.36 0.72 -0.16 0.24 99 Y
simplest_design 503 Q 0 estimator (Intercept) -0.03 0.10 -0.25 0.80 -0.23 0.17 99 Y
simplest_design 504 Q 0 estimator (Intercept) 0.11 0.09 1.20 0.23 -0.07 0.30 99 Y
simplest_design 505 Q 0 estimator (Intercept) -0.06 0.12 -0.50 0.62 -0.29 0.17 99 Y
simplest_design 506 Q 0 estimator (Intercept) 0.03 0.11 0.33 0.74 -0.17 0.24 99 Y
simplest_design 507 Q 0 estimator (Intercept) -0.04 0.10 -0.37 0.72 -0.23 0.16 99 Y
simplest_design 508 Q 0 estimator (Intercept) 0.07 0.08 0.86 0.39 -0.09 0.23 99 Y
simplest_design 509 Q 0 estimator (Intercept) -0.08 0.10 -0.85 0.40 -0.27 0.11 99 Y
simplest_design 510 Q 0 estimator (Intercept) -0.15 0.12 -1.25 0.21 -0.38 0.09 99 Y
simplest_design 511 Q 0 estimator (Intercept) 0.00 0.10 -0.02 0.99 -0.20 0.20 99 Y
simplest_design 512 Q 0 estimator (Intercept) -0.29 0.10 -2.95 0.00 -0.48 -0.09 99 Y
simplest_design 513 Q 0 estimator (Intercept) -0.08 0.10 -0.75 0.46 -0.29 0.13 99 Y
simplest_design 514 Q 0 estimator (Intercept) -0.13 0.10 -1.19 0.24 -0.33 0.08 99 Y
simplest_design 515 Q 0 estimator (Intercept) 0.04 0.10 0.44 0.66 -0.15 0.24 99 Y
simplest_design 516 Q 0 estimator (Intercept) 0.16 0.10 1.53 0.13 -0.05 0.36 99 Y
simplest_design 517 Q 0 estimator (Intercept) 0.21 0.09 2.41 0.02 0.04 0.38 99 Y
simplest_design 518 Q 0 estimator (Intercept) 0.09 0.10 0.90 0.37 -0.11 0.29 99 Y
simplest_design 519 Q 0 estimator (Intercept) -0.11 0.09 -1.21 0.23 -0.28 0.07 99 Y
simplest_design 520 Q 0 estimator (Intercept) -0.10 0.10 -0.96 0.34 -0.29 0.10 99 Y
simplest_design 521 Q 0 estimator (Intercept) 0.03 0.11 0.23 0.82 -0.19 0.25 99 Y
simplest_design 522 Q 0 estimator (Intercept) -0.04 0.09 -0.40 0.69 -0.23 0.15 99 Y
simplest_design 523 Q 0 estimator (Intercept) 0.00 0.11 -0.04 0.97 -0.22 0.21 99 Y
simplest_design 524 Q 0 estimator (Intercept) 0.16 0.10 1.60 0.11 -0.04 0.36 99 Y
simplest_design 525 Q 0 estimator (Intercept) 0.07 0.10 0.72 0.47 -0.13 0.28 99 Y
simplest_design 526 Q 0 estimator (Intercept) -0.06 0.10 -0.57 0.57 -0.26 0.14 99 Y
simplest_design 527 Q 0 estimator (Intercept) 0.01 0.10 0.09 0.93 -0.18 0.20 99 Y
simplest_design 528 Q 0 estimator (Intercept) 0.07 0.09 0.71 0.48 -0.12 0.25 99 Y
simplest_design 529 Q 0 estimator (Intercept) -0.12 0.11 -1.07 0.29 -0.33 0.10 99 Y
simplest_design 530 Q 0 estimator (Intercept) -0.25 0.10 -2.51 0.01 -0.45 -0.05 99 Y
simplest_design 531 Q 0 estimator (Intercept) 0.06 0.10 0.66 0.51 -0.13 0.25 99 Y
simplest_design 532 Q 0 estimator (Intercept) 0.14 0.11 1.30 0.20 -0.07 0.35 99 Y
simplest_design 533 Q 0 estimator (Intercept) 0.03 0.11 0.25 0.81 -0.19 0.24 99 Y
simplest_design 534 Q 0 estimator (Intercept) -0.15 0.10 -1.44 0.15 -0.35 0.06 99 Y
simplest_design 535 Q 0 estimator (Intercept) 0.05 0.09 0.53 0.60 -0.13 0.23 99 Y
simplest_design 536 Q 0 estimator (Intercept) 0.18 0.10 1.73 0.09 -0.03 0.39 99 Y
simplest_design 537 Q 0 estimator (Intercept) 0.03 0.11 0.24 0.81 -0.19 0.24 99 Y
simplest_design 538 Q 0 estimator (Intercept) -0.14 0.10 -1.40 0.16 -0.34 0.06 99 Y
simplest_design 539 Q 0 estimator (Intercept) 0.10 0.10 1.02 0.31 -0.09 0.30 99 Y
simplest_design 540 Q 0 estimator (Intercept) -0.03 0.10 -0.31 0.76 -0.24 0.17 99 Y
simplest_design 541 Q 0 estimator (Intercept) -0.03 0.10 -0.34 0.74 -0.23 0.16 99 Y
simplest_design 542 Q 0 estimator (Intercept) 0.23 0.09 2.51 0.01 0.05 0.41 99 Y
simplest_design 543 Q 0 estimator (Intercept) -0.17 0.11 -1.55 0.13 -0.39 0.05 99 Y
simplest_design 544 Q 0 estimator (Intercept) -0.01 0.10 -0.07 0.94 -0.20 0.19 99 Y
simplest_design 545 Q 0 estimator (Intercept) -0.02 0.10 -0.16 0.87 -0.22 0.18 99 Y
simplest_design 546 Q 0 estimator (Intercept) 0.21 0.10 2.04 0.04 0.01 0.42 99 Y
simplest_design 547 Q 0 estimator (Intercept) -0.12 0.10 -1.19 0.24 -0.33 0.08 99 Y
simplest_design 548 Q 0 estimator (Intercept) 0.07 0.09 0.79 0.43 -0.11 0.26 99 Y
simplest_design 549 Q 0 estimator (Intercept) 0.10 0.10 1.04 0.30 -0.09 0.29 99 Y
simplest_design 550 Q 0 estimator (Intercept) 0.10 0.11 0.88 0.38 -0.12 0.31 99 Y
simplest_design 551 Q 0 estimator (Intercept) -0.01 0.11 -0.12 0.91 -0.23 0.21 99 Y
simplest_design 552 Q 0 estimator (Intercept) 0.07 0.10 0.71 0.48 -0.13 0.27 99 Y
simplest_design 553 Q 0 estimator (Intercept) 0.17 0.11 1.50 0.14 -0.05 0.39 99 Y
simplest_design 554 Q 0 estimator (Intercept) 0.00 0.10 -0.01 0.99 -0.20 0.20 99 Y
simplest_design 555 Q 0 estimator (Intercept) -0.07 0.10 -0.74 0.46 -0.27 0.12 99 Y
simplest_design 556 Q 0 estimator (Intercept) -0.05 0.09 -0.51 0.61 -0.22 0.13 99 Y
simplest_design 557 Q 0 estimator (Intercept) -0.01 0.10 -0.09 0.93 -0.21 0.19 99 Y
simplest_design 558 Q 0 estimator (Intercept) 0.05 0.11 0.48 0.63 -0.17 0.28 99 Y
simplest_design 559 Q 0 estimator (Intercept) 0.06 0.10 0.56 0.58 -0.14 0.25 99 Y
simplest_design 560 Q 0 estimator (Intercept) 0.18 0.10 1.89 0.06 -0.01 0.37 99 Y
simplest_design 561 Q 0 estimator (Intercept) -0.02 0.10 -0.25 0.80 -0.22 0.17 99 Y
simplest_design 562 Q 0 estimator (Intercept) -0.08 0.09 -0.92 0.36 -0.26 0.09 99 Y
simplest_design 563 Q 0 estimator (Intercept) -0.01 0.10 -0.10 0.92 -0.20 0.18 99 Y
simplest_design 564 Q 0 estimator (Intercept) 0.14 0.10 1.51 0.14 -0.05 0.33 99 Y
simplest_design 565 Q 0 estimator (Intercept) -0.01 0.10 -0.08 0.93 -0.21 0.19 99 Y
simplest_design 566 Q 0 estimator (Intercept) 0.01 0.09 0.10 0.92 -0.17 0.19 99 Y
simplest_design 567 Q 0 estimator (Intercept) -0.06 0.09 -0.62 0.53 -0.25 0.13 99 Y
simplest_design 568 Q 0 estimator (Intercept) -0.15 0.10 -1.54 0.13 -0.35 0.04 99 Y
simplest_design 569 Q 0 estimator (Intercept) -0.07 0.10 -0.70 0.48 -0.26 0.12 99 Y
simplest_design 570 Q 0 estimator (Intercept) 0.11 0.10 1.04 0.30 -0.10 0.31 99 Y
simplest_design 571 Q 0 estimator (Intercept) 0.13 0.10 1.36 0.18 -0.06 0.33 99 Y
simplest_design 572 Q 0 estimator (Intercept) -0.18 0.11 -1.69 0.09 -0.40 0.03 99 Y
simplest_design 573 Q 0 estimator (Intercept) 0.03 0.10 0.31 0.76 -0.17 0.24 99 Y
simplest_design 574 Q 0 estimator (Intercept) 0.06 0.11 0.53 0.60 -0.17 0.29 99 Y
simplest_design 575 Q 0 estimator (Intercept) 0.02 0.11 0.20 0.85 -0.19 0.23 99 Y
simplest_design 576 Q 0 estimator (Intercept) 0.06 0.09 0.68 0.50 -0.11 0.23 99 Y
simplest_design 577 Q 0 estimator (Intercept) 0.01 0.10 0.11 0.92 -0.19 0.21 99 Y
simplest_design 578 Q 0 estimator (Intercept) 0.07 0.10 0.74 0.46 -0.12 0.26 99 Y
simplest_design 579 Q 0 estimator (Intercept) -0.13 0.10 -1.35 0.18 -0.32 0.06 99 Y
simplest_design 580 Q 0 estimator (Intercept) -0.14 0.09 -1.51 0.13 -0.33 0.05 99 Y
simplest_design 581 Q 0 estimator (Intercept) -0.08 0.11 -0.75 0.45 -0.29 0.13 99 Y
simplest_design 582 Q 0 estimator (Intercept) 0.06 0.09 0.62 0.53 -0.13 0.24 99 Y
simplest_design 583 Q 0 estimator (Intercept) 0.07 0.10 0.68 0.50 -0.14 0.28 99 Y
simplest_design 584 Q 0 estimator (Intercept) -0.07 0.10 -0.65 0.51 -0.28 0.14 99 Y
simplest_design 585 Q 0 estimator (Intercept) 0.06 0.08 0.73 0.47 -0.10 0.23 99 Y
simplest_design 586 Q 0 estimator (Intercept) 0.04 0.09 0.48 0.63 -0.13 0.22 99 Y
simplest_design 587 Q 0 estimator (Intercept) -0.07 0.10 -0.71 0.48 -0.28 0.13 99 Y
simplest_design 588 Q 0 estimator (Intercept) -0.20 0.10 -1.95 0.05 -0.40 0.00 99 Y
simplest_design 589 Q 0 estimator (Intercept) 0.09 0.10 0.92 0.36 -0.11 0.30 99 Y
simplest_design 590 Q 0 estimator (Intercept) -0.01 0.09 -0.14 0.89 -0.19 0.17 99 Y
simplest_design 591 Q 0 estimator (Intercept) 0.15 0.09 1.60 0.11 -0.04 0.33 99 Y
simplest_design 592 Q 0 estimator (Intercept) -0.02 0.10 -0.17 0.87 -0.22 0.19 99 Y
simplest_design 593 Q 0 estimator (Intercept) 0.10 0.10 1.00 0.32 -0.10 0.29 99 Y
simplest_design 594 Q 0 estimator (Intercept) -0.08 0.10 -0.81 0.42 -0.29 0.12 99 Y
simplest_design 595 Q 0 estimator (Intercept) 0.03 0.10 0.31 0.76 -0.17 0.23 99 Y
simplest_design 596 Q 0 estimator (Intercept) 0.10 0.10 0.99 0.32 -0.10 0.31 99 Y
simplest_design 597 Q 0 estimator (Intercept) -0.09 0.10 -0.90 0.37 -0.28 0.11 99 Y
simplest_design 598 Q 0 estimator (Intercept) 0.14 0.10 1.38 0.17 -0.06 0.34 99 Y
simplest_design 599 Q 0 estimator (Intercept) -0.01 0.10 -0.12 0.91 -0.21 0.19 99 Y
simplest_design 600 Q 0 estimator (Intercept) -0.08 0.10 -0.85 0.40 -0.28 0.11 99 Y
simplest_design 601 Q 0 estimator (Intercept) -0.02 0.09 -0.24 0.81 -0.21 0.16 99 Y
simplest_design 602 Q 0 estimator (Intercept) 0.10 0.11 0.90 0.37 -0.11 0.31 99 Y
simplest_design 603 Q 0 estimator (Intercept) 0.00 0.09 -0.01 0.99 -0.19 0.18 99 Y
simplest_design 604 Q 0 estimator (Intercept) 0.00 0.09 0.01 0.99 -0.19 0.19 99 Y
simplest_design 605 Q 0 estimator (Intercept) -0.08 0.10 -0.80 0.42 -0.27 0.12 99 Y
simplest_design 606 Q 0 estimator (Intercept) 0.08 0.10 0.81 0.42 -0.12 0.27 99 Y
simplest_design 607 Q 0 estimator (Intercept) -0.13 0.10 -1.30 0.20 -0.34 0.07 99 Y
simplest_design 608 Q 0 estimator (Intercept) -0.11 0.10 -1.12 0.27 -0.30 0.08 99 Y
simplest_design 609 Q 0 estimator (Intercept) -0.13 0.09 -1.35 0.18 -0.31 0.06 99 Y
simplest_design 610 Q 0 estimator (Intercept) -0.03 0.10 -0.25 0.80 -0.23 0.18 99 Y
simplest_design 611 Q 0 estimator (Intercept) -0.05 0.10 -0.51 0.61 -0.24 0.14 99 Y
simplest_design 612 Q 0 estimator (Intercept) -0.12 0.10 -1.28 0.20 -0.31 0.07 99 Y
simplest_design 613 Q 0 estimator (Intercept) 0.10 0.09 1.08 0.28 -0.08 0.28 99 Y
simplest_design 614 Q 0 estimator (Intercept) 0.04 0.10 0.40 0.69 -0.15 0.23 99 Y
simplest_design 615 Q 0 estimator (Intercept) 0.19 0.10 1.92 0.06 -0.01 0.38 99 Y
simplest_design 616 Q 0 estimator (Intercept) -0.04 0.09 -0.43 0.67 -0.23 0.15 99 Y
simplest_design 617 Q 0 estimator (Intercept) -0.11 0.09 -1.26 0.21 -0.29 0.07 99 Y
simplest_design 618 Q 0 estimator (Intercept) -0.02 0.10 -0.20 0.84 -0.23 0.18 99 Y
simplest_design 619 Q 0 estimator (Intercept) -0.03 0.10 -0.32 0.75 -0.22 0.16 99 Y
simplest_design 620 Q 0 estimator (Intercept) 0.05 0.10 0.49 0.63 -0.15 0.25 99 Y
simplest_design 621 Q 0 estimator (Intercept) 0.07 0.10 0.70 0.48 -0.13 0.28 99 Y
simplest_design 622 Q 0 estimator (Intercept) 0.02 0.11 0.15 0.88 -0.19 0.23 99 Y
simplest_design 623 Q 0 estimator (Intercept) -0.03 0.11 -0.33 0.74 -0.24 0.17 99 Y
simplest_design 624 Q 0 estimator (Intercept) -0.12 0.10 -1.16 0.25 -0.32 0.08 99 Y
simplest_design 625 Q 0 estimator (Intercept) 0.16 0.11 1.48 0.14 -0.05 0.37 99 Y
simplest_design 626 Q 0 estimator (Intercept) -0.09 0.10 -0.92 0.36 -0.29 0.11 99 Y
simplest_design 627 Q 0 estimator (Intercept) -0.05 0.10 -0.44 0.66 -0.25 0.16 99 Y
simplest_design 628 Q 0 estimator (Intercept) 0.05 0.10 0.51 0.61 -0.15 0.25 99 Y
simplest_design 629 Q 0 estimator (Intercept) 0.01 0.12 0.08 0.94 -0.23 0.25 99 Y
simplest_design 630 Q 0 estimator (Intercept) 0.07 0.11 0.64 0.52 -0.14 0.28 99 Y
simplest_design 631 Q 0 estimator (Intercept) -0.05 0.11 -0.41 0.68 -0.27 0.18 99 Y
simplest_design 632 Q 0 estimator (Intercept) 0.04 0.10 0.37 0.71 -0.16 0.24 99 Y
simplest_design 633 Q 0 estimator (Intercept) -0.01 0.10 -0.11 0.91 -0.21 0.19 99 Y
simplest_design 634 Q 0 estimator (Intercept) 0.01 0.10 0.10 0.92 -0.19 0.21 99 Y
simplest_design 635 Q 0 estimator (Intercept) -0.02 0.10 -0.23 0.82 -0.23 0.18 99 Y
simplest_design 636 Q 0 estimator (Intercept) -0.04 0.10 -0.40 0.69 -0.25 0.16 99 Y
simplest_design 637 Q 0 estimator (Intercept) 0.04 0.09 0.37 0.71 -0.15 0.22 99 Y
simplest_design 638 Q 0 estimator (Intercept) 0.04 0.10 0.41 0.68 -0.15 0.23 99 Y
simplest_design 639 Q 0 estimator (Intercept) 0.01 0.10 0.11 0.92 -0.20 0.22 99 Y
simplest_design 640 Q 0 estimator (Intercept) 0.06 0.09 0.74 0.46 -0.11 0.24 99 Y
simplest_design 641 Q 0 estimator (Intercept) -0.15 0.10 -1.52 0.13 -0.35 0.05 99 Y
simplest_design 642 Q 0 estimator (Intercept) 0.14 0.11 1.29 0.20 -0.08 0.36 99 Y
simplest_design 643 Q 0 estimator (Intercept) -0.17 0.09 -1.87 0.06 -0.36 0.01 99 Y
simplest_design 644 Q 0 estimator (Intercept) -0.02 0.10 -0.19 0.85 -0.22 0.18 99 Y
simplest_design 645 Q 0 estimator (Intercept) -0.17 0.09 -1.89 0.06 -0.35 0.01 99 Y
simplest_design 646 Q 0 estimator (Intercept) 0.02 0.11 0.17 0.87 -0.20 0.24 99 Y
simplest_design 647 Q 0 estimator (Intercept) -0.13 0.10 -1.27 0.21 -0.33 0.07 99 Y
simplest_design 648 Q 0 estimator (Intercept) 0.13 0.11 1.19 0.24 -0.09 0.35 99 Y
simplest_design 649 Q 0 estimator (Intercept) -0.06 0.10 -0.64 0.52 -0.26 0.14 99 Y
simplest_design 650 Q 0 estimator (Intercept) -0.04 0.09 -0.42 0.68 -0.23 0.15 99 Y
simplest_design 651 Q 0 estimator (Intercept) -0.12 0.09 -1.35 0.18 -0.29 0.06 99 Y
simplest_design 652 Q 0 estimator (Intercept) -0.02 0.10 -0.23 0.82 -0.22 0.17 99 Y
simplest_design 653 Q 0 estimator (Intercept) 0.16 0.11 1.39 0.17 -0.07 0.38 99 Y
simplest_design 654 Q 0 estimator (Intercept) 0.03 0.10 0.27 0.79 -0.18 0.24 99 Y
simplest_design 655 Q 0 estimator (Intercept) -0.07 0.11 -0.63 0.53 -0.27 0.14 99 Y
simplest_design 656 Q 0 estimator (Intercept) 0.14 0.11 1.30 0.20 -0.07 0.36 99 Y
simplest_design 657 Q 0 estimator (Intercept) 0.01 0.10 0.08 0.94 -0.19 0.20 99 Y
simplest_design 658 Q 0 estimator (Intercept) -0.04 0.09 -0.43 0.67 -0.22 0.14 99 Y
simplest_design 659 Q 0 estimator (Intercept) -0.02 0.10 -0.24 0.81 -0.23 0.18 99 Y
simplest_design 660 Q 0 estimator (Intercept) -0.19 0.09 -2.10 0.04 -0.36 -0.01 99 Y
simplest_design 661 Q 0 estimator (Intercept) -0.17 0.09 -1.79 0.08 -0.35 0.02 99 Y
simplest_design 662 Q 0 estimator (Intercept) 0.06 0.10 0.60 0.55 -0.14 0.26 99 Y
simplest_design 663 Q 0 estimator (Intercept) 0.01 0.11 0.06 0.95 -0.21 0.22 99 Y
simplest_design 664 Q 0 estimator (Intercept) -0.02 0.10 -0.23 0.82 -0.23 0.18 99 Y
simplest_design 665 Q 0 estimator (Intercept) -0.01 0.10 -0.05 0.96 -0.21 0.20 99 Y
simplest_design 666 Q 0 estimator (Intercept) 0.00 0.11 0.04 0.97 -0.21 0.22 99 Y
simplest_design 667 Q 0 estimator (Intercept) -0.11 0.09 -1.17 0.24 -0.29 0.07 99 Y
simplest_design 668 Q 0 estimator (Intercept) -0.07 0.10 -0.66 0.51 -0.27 0.13 99 Y
simplest_design 669 Q 0 estimator (Intercept) 0.02 0.11 0.20 0.84 -0.19 0.23 99 Y
simplest_design 670 Q 0 estimator (Intercept) 0.01 0.09 0.08 0.94 -0.18 0.19 99 Y
simplest_design 671 Q 0 estimator (Intercept) 0.08 0.09 0.82 0.41 -0.11 0.26 99 Y
simplest_design 672 Q 0 estimator (Intercept) -0.04 0.09 -0.49 0.63 -0.23 0.14 99 Y
simplest_design 673 Q 0 estimator (Intercept) 0.02 0.09 0.22 0.83 -0.17 0.21 99 Y
simplest_design 674 Q 0 estimator (Intercept) 0.03 0.10 0.30 0.77 -0.17 0.22 99 Y
simplest_design 675 Q 0 estimator (Intercept) -0.13 0.11 -1.24 0.22 -0.35 0.08 99 Y
simplest_design 676 Q 0 estimator (Intercept) 0.04 0.10 0.40 0.69 -0.16 0.24 99 Y
simplest_design 677 Q 0 estimator (Intercept) 0.01 0.10 0.07 0.94 -0.19 0.21 99 Y
simplest_design 678 Q 0 estimator (Intercept) -0.19 0.10 -1.89 0.06 -0.40 0.01 99 Y
simplest_design 679 Q 0 estimator (Intercept) 0.09 0.10 0.85 0.40 -0.12 0.29 99 Y
simplest_design 680 Q 0 estimator (Intercept) -0.23 0.11 -2.04 0.04 -0.46 -0.01 99 Y
simplest_design 681 Q 0 estimator (Intercept) 0.03 0.10 0.30 0.77 -0.16 0.22 99 Y
simplest_design 682 Q 0 estimator (Intercept) 0.10 0.12 0.89 0.37 -0.13 0.33 99 Y
simplest_design 683 Q 0 estimator (Intercept) -0.22 0.11 -1.99 0.05 -0.43 0.00 99 Y
simplest_design 684 Q 0 estimator (Intercept) 0.06 0.11 0.57 0.57 -0.15 0.27 99 Y
simplest_design 685 Q 0 estimator (Intercept) -0.06 0.11 -0.54 0.59 -0.27 0.15 99 Y
simplest_design 686 Q 0 estimator (Intercept) -0.15 0.10 -1.43 0.16 -0.35 0.06 99 Y
simplest_design 687 Q 0 estimator (Intercept) 0.04 0.10 0.40 0.69 -0.16 0.24 99 Y
simplest_design 688 Q 0 estimator (Intercept) -0.02 0.11 -0.14 0.89 -0.23 0.20 99 Y
simplest_design 689 Q 0 estimator (Intercept) 0.03 0.10 0.35 0.73 -0.16 0.22 99 Y
simplest_design 690 Q 0 estimator (Intercept) 0.07 0.10 0.69 0.49 -0.13 0.26 99 Y
simplest_design 691 Q 0 estimator (Intercept) -0.18 0.10 -1.79 0.08 -0.38 0.02 99 Y
simplest_design 692 Q 0 estimator (Intercept) -0.06 0.08 -0.69 0.49 -0.22 0.11 99 Y
simplest_design 693 Q 0 estimator (Intercept) 0.00 0.10 -0.04 0.97 -0.20 0.20 99 Y
simplest_design 694 Q 0 estimator (Intercept) -0.04 0.09 -0.46 0.65 -0.21 0.13 99 Y
simplest_design 695 Q 0 estimator (Intercept) 0.04 0.11 0.38 0.70 -0.17 0.26 99 Y
simplest_design 696 Q 0 estimator (Intercept) -0.04 0.11 -0.36 0.72 -0.25 0.17 99 Y
simplest_design 697 Q 0 estimator (Intercept) 0.05 0.09 0.49 0.63 -0.14 0.23 99 Y
simplest_design 698 Q 0 estimator (Intercept) 0.16 0.11 1.52 0.13 -0.05 0.37 99 Y
simplest_design 699 Q 0 estimator (Intercept) 0.08 0.11 0.77 0.44 -0.13 0.30 99 Y
simplest_design 700 Q 0 estimator (Intercept) 0.06 0.10 0.57 0.57 -0.14 0.25 99 Y
simplest_design 701 Q 0 estimator (Intercept) -0.08 0.09 -0.89 0.38 -0.26 0.10 99 Y
simplest_design 702 Q 0 estimator (Intercept) -0.06 0.12 -0.47 0.64 -0.29 0.18 99 Y
simplest_design 703 Q 0 estimator (Intercept) -0.02 0.11 -0.20 0.84 -0.24 0.20 99 Y
simplest_design 704 Q 0 estimator (Intercept) 0.02 0.09 0.19 0.85 -0.16 0.20 99 Y
simplest_design 705 Q 0 estimator (Intercept) 0.21 0.10 2.11 0.04 0.01 0.42 99 Y
simplest_design 706 Q 0 estimator (Intercept) 0.05 0.10 0.49 0.63 -0.15 0.25 99 Y
simplest_design 707 Q 0 estimator (Intercept) 0.05 0.10 0.48 0.64 -0.15 0.24 99 Y
simplest_design 708 Q 0 estimator (Intercept) 0.02 0.11 0.21 0.84 -0.20 0.24 99 Y
simplest_design 709 Q 0 estimator (Intercept) 0.14 0.08 1.71 0.09 -0.02 0.30 99 Y
simplest_design 710 Q 0 estimator (Intercept) 0.15 0.09 1.69 0.09 -0.03 0.33 99 Y
simplest_design 711 Q 0 estimator (Intercept) 0.25 0.11 2.28 0.02 0.03 0.46 99 Y
simplest_design 712 Q 0 estimator (Intercept) -0.11 0.10 -1.11 0.27 -0.31 0.09 99 Y
simplest_design 713 Q 0 estimator (Intercept) 0.16 0.10 1.58 0.12 -0.04 0.37 99 Y
simplest_design 714 Q 0 estimator (Intercept) -0.16 0.11 -1.44 0.15 -0.38 0.06 99 Y
simplest_design 715 Q 0 estimator (Intercept) 0.18 0.10 1.75 0.08 -0.02 0.38 99 Y
simplest_design 716 Q 0 estimator (Intercept) -0.03 0.10 -0.24 0.81 -0.23 0.18 99 Y
simplest_design 717 Q 0 estimator (Intercept) 0.00 0.09 0.02 0.98 -0.18 0.18 99 Y
simplest_design 718 Q 0 estimator (Intercept) -0.07 0.11 -0.69 0.49 -0.28 0.14 99 Y
simplest_design 719 Q 0 estimator (Intercept) 0.11 0.09 1.30 0.20 -0.06 0.29 99 Y
simplest_design 720 Q 0 estimator (Intercept) 0.21 0.10 1.98 0.05 0.00 0.41 99 Y
simplest_design 721 Q 0 estimator (Intercept) -0.10 0.11 -0.88 0.38 -0.32 0.12 99 Y
simplest_design 722 Q 0 estimator (Intercept) 0.03 0.09 0.38 0.71 -0.15 0.22 99 Y
simplest_design 723 Q 0 estimator (Intercept) -0.05 0.09 -0.54 0.59 -0.22 0.13 99 Y
simplest_design 724 Q 0 estimator (Intercept) -0.02 0.09 -0.23 0.82 -0.19 0.15 99 Y
simplest_design 725 Q 0 estimator (Intercept) -0.05 0.10 -0.54 0.59 -0.25 0.14 99 Y
simplest_design 726 Q 0 estimator (Intercept) 0.07 0.11 0.66 0.51 -0.14 0.29 99 Y
simplest_design 727 Q 0 estimator (Intercept) -0.21 0.11 -1.90 0.06 -0.42 0.01 99 Y
simplest_design 728 Q 0 estimator (Intercept) -0.01 0.11 -0.09 0.93 -0.23 0.22 99 Y
simplest_design 729 Q 0 estimator (Intercept) -0.14 0.10 -1.44 0.15 -0.34 0.05 99 Y
simplest_design 730 Q 0 estimator (Intercept) 0.11 0.10 1.12 0.27 -0.08 0.30 99 Y
simplest_design 731 Q 0 estimator (Intercept) 0.27 0.09 2.87 0.01 0.08 0.46 99 Y
simplest_design 732 Q 0 estimator (Intercept) 0.03 0.10 0.26 0.79 -0.17 0.22 99 Y
simplest_design 733 Q 0 estimator (Intercept) 0.13 0.09 1.47 0.15 -0.05 0.30 99 Y
simplest_design 734 Q 0 estimator (Intercept) 0.03 0.09 0.39 0.70 -0.14 0.21 99 Y
simplest_design 735 Q 0 estimator (Intercept) 0.00 0.10 -0.02 0.99 -0.21 0.20 99 Y
simplest_design 736 Q 0 estimator (Intercept) -0.02 0.11 -0.18 0.86 -0.24 0.20 99 Y
simplest_design 737 Q 0 estimator (Intercept) 0.09 0.10 0.90 0.37 -0.11 0.29 99 Y
simplest_design 738 Q 0 estimator (Intercept) 0.31 0.11 2.96 0.00 0.10 0.52 99 Y
simplest_design 739 Q 0 estimator (Intercept) -0.06 0.09 -0.58 0.56 -0.24 0.13 99 Y
simplest_design 740 Q 0 estimator (Intercept) -0.02 0.11 -0.24 0.81 -0.23 0.18 99 Y
simplest_design 741 Q 0 estimator (Intercept) -0.17 0.09 -1.84 0.07 -0.35 0.01 99 Y
simplest_design 742 Q 0 estimator (Intercept) 0.23 0.10 2.26 0.03 0.03 0.44 99 Y
simplest_design 743 Q 0 estimator (Intercept) -0.10 0.11 -0.98 0.33 -0.32 0.11 99 Y
simplest_design 744 Q 0 estimator (Intercept) -0.10 0.11 -0.95 0.35 -0.32 0.11 99 Y
simplest_design 745 Q 0 estimator (Intercept) 0.02 0.11 0.19 0.85 -0.20 0.25 99 Y
simplest_design 746 Q 0 estimator (Intercept) -0.09 0.10 -0.84 0.40 -0.29 0.12 99 Y
simplest_design 747 Q 0 estimator (Intercept) -0.06 0.11 -0.52 0.60 -0.28 0.16 99 Y
simplest_design 748 Q 0 estimator (Intercept) -0.07 0.10 -0.69 0.49 -0.27 0.13 99 Y
simplest_design 749 Q 0 estimator (Intercept) 0.11 0.11 0.96 0.34 -0.11 0.33 99 Y
simplest_design 750 Q 0 estimator (Intercept) 0.04 0.10 0.43 0.67 -0.15 0.23 99 Y
simplest_design 751 Q 0 estimator (Intercept) 0.25 0.10 2.57 0.01 0.06 0.44 99 Y
simplest_design 752 Q 0 estimator (Intercept) -0.08 0.10 -0.81 0.42 -0.28 0.12 99 Y
simplest_design 753 Q 0 estimator (Intercept) 0.06 0.10 0.56 0.58 -0.14 0.25 99 Y
simplest_design 754 Q 0 estimator (Intercept) 0.04 0.11 0.33 0.74 -0.18 0.26 99 Y
simplest_design 755 Q 0 estimator (Intercept) -0.11 0.10 -1.19 0.24 -0.31 0.08 99 Y
simplest_design 756 Q 0 estimator (Intercept) 0.04 0.09 0.43 0.67 -0.14 0.22 99 Y
simplest_design 757 Q 0 estimator (Intercept) 0.03 0.09 0.35 0.73 -0.14 0.21 99 Y
simplest_design 758 Q 0 estimator (Intercept) 0.05 0.10 0.49 0.63 -0.15 0.25 99 Y
simplest_design 759 Q 0 estimator (Intercept) 0.13 0.10 1.27 0.21 -0.07 0.33 99 Y
simplest_design 760 Q 0 estimator (Intercept) 0.03 0.09 0.40 0.69 -0.14 0.21 99 Y
simplest_design 761 Q 0 estimator (Intercept) -0.01 0.10 -0.05 0.96 -0.21 0.19 99 Y
simplest_design 762 Q 0 estimator (Intercept) 0.12 0.09 1.24 0.22 -0.07 0.30 99 Y
simplest_design 763 Q 0 estimator (Intercept) -0.15 0.10 -1.53 0.13 -0.35 0.05 99 Y
simplest_design 764 Q 0 estimator (Intercept) -0.14 0.10 -1.44 0.15 -0.34 0.05 99 Y
simplest_design 765 Q 0 estimator (Intercept) 0.11 0.09 1.17 0.24 -0.08 0.29 99 Y
simplest_design 766 Q 0 estimator (Intercept) -0.07 0.11 -0.66 0.51 -0.28 0.14 99 Y
simplest_design 767 Q 0 estimator (Intercept) 0.03 0.11 0.27 0.79 -0.19 0.25 99 Y
simplest_design 768 Q 0 estimator (Intercept) -0.15 0.10 -1.41 0.16 -0.36 0.06 99 Y
simplest_design 769 Q 0 estimator (Intercept) -0.05 0.10 -0.49 0.63 -0.26 0.16 99 Y
simplest_design 770 Q 0 estimator (Intercept) 0.00 0.10 0.03 0.97 -0.19 0.20 99 Y
simplest_design 771 Q 0 estimator (Intercept) 0.05 0.11 0.41 0.68 -0.18 0.27 99 Y
simplest_design 772 Q 0 estimator (Intercept) 0.01 0.10 0.13 0.90 -0.19 0.22 99 Y
simplest_design 773 Q 0 estimator (Intercept) 0.05 0.10 0.52 0.60 -0.14 0.24 99 Y
simplest_design 774 Q 0 estimator (Intercept) -0.06 0.10 -0.57 0.57 -0.27 0.15 99 Y
simplest_design 775 Q 0 estimator (Intercept) 0.06 0.09 0.62 0.53 -0.13 0.24 99 Y
simplest_design 776 Q 0 estimator (Intercept) 0.01 0.10 0.14 0.89 -0.18 0.20 99 Y
simplest_design 777 Q 0 estimator (Intercept) 0.07 0.09 0.76 0.45 -0.11 0.25 99 Y
simplest_design 778 Q 0 estimator (Intercept) 0.06 0.10 0.64 0.52 -0.14 0.27 99 Y
simplest_design 779 Q 0 estimator (Intercept) -0.23 0.11 -2.19 0.03 -0.44 -0.02 99 Y
simplest_design 780 Q 0 estimator (Intercept) 0.04 0.11 0.41 0.68 -0.17 0.26 99 Y
simplest_design 781 Q 0 estimator (Intercept) -0.08 0.11 -0.77 0.44 -0.29 0.13 99 Y
simplest_design 782 Q 0 estimator (Intercept) -0.08 0.11 -0.76 0.45 -0.29 0.13 99 Y
simplest_design 783 Q 0 estimator (Intercept) -0.04 0.10 -0.43 0.67 -0.25 0.16 99 Y
simplest_design 784 Q 0 estimator (Intercept) 0.14 0.09 1.53 0.13 -0.04 0.31 99 Y
simplest_design 785 Q 0 estimator (Intercept) 0.01 0.09 0.08 0.93 -0.17 0.18 99 Y
simplest_design 786 Q 0 estimator (Intercept) -0.16 0.09 -1.64 0.10 -0.34 0.03 99 Y
simplest_design 787 Q 0 estimator (Intercept) -0.07 0.10 -0.71 0.48 -0.28 0.13 99 Y
simplest_design 788 Q 0 estimator (Intercept) -0.01 0.09 -0.06 0.95 -0.19 0.18 99 Y
simplest_design 789 Q 0 estimator (Intercept) -0.04 0.11 -0.41 0.69 -0.25 0.17 99 Y
simplest_design 790 Q 0 estimator (Intercept) 0.05 0.09 0.51 0.61 -0.13 0.23 99 Y
simplest_design 791 Q 0 estimator (Intercept) -0.07 0.09 -0.81 0.42 -0.25 0.11 99 Y
simplest_design 792 Q 0 estimator (Intercept) 0.05 0.10 0.50 0.62 -0.15 0.25 99 Y
simplest_design 793 Q 0 estimator (Intercept) -0.07 0.09 -0.78 0.44 -0.26 0.11 99 Y
simplest_design 794 Q 0 estimator (Intercept) -0.02 0.10 -0.22 0.83 -0.22 0.18 99 Y
simplest_design 795 Q 0 estimator (Intercept) 0.02 0.11 0.21 0.83 -0.19 0.24 99 Y
simplest_design 796 Q 0 estimator (Intercept) 0.16 0.10 1.64 0.10 -0.03 0.34 99 Y
simplest_design 797 Q 0 estimator (Intercept) -0.05 0.09 -0.56 0.58 -0.22 0.12 99 Y
simplest_design 798 Q 0 estimator (Intercept) 0.05 0.10 0.53 0.60 -0.14 0.24 99 Y
simplest_design 799 Q 0 estimator (Intercept) -0.18 0.11 -1.70 0.09 -0.39 0.03 99 Y
simplest_design 800 Q 0 estimator (Intercept) -0.07 0.10 -0.75 0.45 -0.26 0.12 99 Y
simplest_design 801 Q 0 estimator (Intercept) 0.09 0.10 0.91 0.37 -0.11 0.29 99 Y
simplest_design 802 Q 0 estimator (Intercept) -0.19 0.09 -2.09 0.04 -0.37 -0.01 99 Y
simplest_design 803 Q 0 estimator (Intercept) 0.09 0.10 0.84 0.40 -0.12 0.29 99 Y
simplest_design 804 Q 0 estimator (Intercept) 0.06 0.09 0.70 0.48 -0.12 0.25 99 Y
simplest_design 805 Q 0 estimator (Intercept) -0.01 0.10 -0.12 0.91 -0.20 0.18 99 Y
simplest_design 806 Q 0 estimator (Intercept) 0.00 0.09 -0.01 0.99 -0.17 0.17 99 Y
simplest_design 807 Q 0 estimator (Intercept) 0.11 0.10 1.03 0.31 -0.10 0.31 99 Y
simplest_design 808 Q 0 estimator (Intercept) -0.09 0.10 -0.91 0.36 -0.29 0.11 99 Y
simplest_design 809 Q 0 estimator (Intercept) 0.13 0.09 1.48 0.14 -0.04 0.30 99 Y
simplest_design 810 Q 0 estimator (Intercept) 0.09 0.10 0.87 0.39 -0.11 0.29 99 Y
simplest_design 811 Q 0 estimator (Intercept) 0.13 0.11 1.19 0.24 -0.09 0.35 99 Y
simplest_design 812 Q 0 estimator (Intercept) -0.04 0.10 -0.43 0.67 -0.23 0.15 99 Y
simplest_design 813 Q 0 estimator (Intercept) 0.12 0.09 1.27 0.21 -0.07 0.30 99 Y
simplest_design 814 Q 0 estimator (Intercept) 0.03 0.11 0.29 0.77 -0.18 0.24 99 Y
simplest_design 815 Q 0 estimator (Intercept) 0.10 0.09 1.17 0.24 -0.07 0.27 99 Y
simplest_design 816 Q 0 estimator (Intercept) 0.05 0.11 0.48 0.63 -0.16 0.27 99 Y
simplest_design 817 Q 0 estimator (Intercept) -0.23 0.09 -2.53 0.01 -0.42 -0.05 99 Y
simplest_design 818 Q 0 estimator (Intercept) -0.07 0.09 -0.74 0.46 -0.25 0.11 99 Y
simplest_design 819 Q 0 estimator (Intercept) 0.01 0.10 0.08 0.94 -0.20 0.21 99 Y
simplest_design 820 Q 0 estimator (Intercept) -0.18 0.09 -1.86 0.07 -0.36 0.01 99 Y
simplest_design 821 Q 0 estimator (Intercept) -0.07 0.11 -0.61 0.54 -0.29 0.15 99 Y
simplest_design 822 Q 0 estimator (Intercept) 0.04 0.11 0.39 0.70 -0.17 0.25 99 Y
simplest_design 823 Q 0 estimator (Intercept) -0.04 0.10 -0.42 0.68 -0.23 0.15 99 Y
simplest_design 824 Q 0 estimator (Intercept) -0.13 0.11 -1.27 0.21 -0.34 0.08 99 Y
simplest_design 825 Q 0 estimator (Intercept) -0.04 0.09 -0.42 0.67 -0.23 0.15 99 Y
simplest_design 826 Q 0 estimator (Intercept) 0.02 0.09 0.25 0.81 -0.16 0.20 99 Y
simplest_design 827 Q 0 estimator (Intercept) -0.06 0.11 -0.57 0.57 -0.28 0.15 99 Y
simplest_design 828 Q 0 estimator (Intercept) -0.05 0.10 -0.55 0.58 -0.25 0.14 99 Y
simplest_design 829 Q 0 estimator (Intercept) -0.04 0.09 -0.43 0.67 -0.22 0.14 99 Y
simplest_design 830 Q 0 estimator (Intercept) -0.10 0.10 -1.03 0.30 -0.31 0.10 99 Y
simplest_design 831 Q 0 estimator (Intercept) -0.02 0.09 -0.21 0.84 -0.20 0.16 99 Y
simplest_design 832 Q 0 estimator (Intercept) 0.05 0.10 0.50 0.62 -0.14 0.24 99 Y
simplest_design 833 Q 0 estimator (Intercept) -0.02 0.10 -0.21 0.83 -0.23 0.18 99 Y
simplest_design 834 Q 0 estimator (Intercept) 0.08 0.10 0.81 0.42 -0.11 0.27 99 Y
simplest_design 835 Q 0 estimator (Intercept) -0.03 0.11 -0.29 0.77 -0.25 0.18 99 Y
simplest_design 836 Q 0 estimator (Intercept) -0.06 0.12 -0.52 0.60 -0.30 0.17 99 Y
simplest_design 837 Q 0 estimator (Intercept) 0.04 0.09 0.41 0.68 -0.15 0.23 99 Y
simplest_design 838 Q 0 estimator (Intercept) -0.13 0.11 -1.19 0.24 -0.35 0.09 99 Y
simplest_design 839 Q 0 estimator (Intercept) -0.12 0.10 -1.17 0.24 -0.32 0.08 99 Y
simplest_design 840 Q 0 estimator (Intercept) -0.09 0.10 -0.92 0.36 -0.28 0.10 99 Y
simplest_design 841 Q 0 estimator (Intercept) 0.04 0.12 0.38 0.70 -0.19 0.28 99 Y
simplest_design 842 Q 0 estimator (Intercept) -0.25 0.10 -2.42 0.02 -0.45 -0.04 99 Y
simplest_design 843 Q 0 estimator (Intercept) -0.03 0.10 -0.28 0.78 -0.23 0.17 99 Y
simplest_design 844 Q 0 estimator (Intercept) 0.08 0.10 0.81 0.42 -0.11 0.27 99 Y
simplest_design 845 Q 0 estimator (Intercept) -0.18 0.10 -1.89 0.06 -0.37 0.01 99 Y
simplest_design 846 Q 0 estimator (Intercept) -0.07 0.11 -0.63 0.53 -0.28 0.15 99 Y
simplest_design 847 Q 0 estimator (Intercept) -0.04 0.09 -0.47 0.64 -0.22 0.14 99 Y
simplest_design 848 Q 0 estimator (Intercept) -0.07 0.11 -0.62 0.54 -0.28 0.15 99 Y
simplest_design 849 Q 0 estimator (Intercept) 0.15 0.09 1.55 0.12 -0.04 0.33 99 Y
simplest_design 850 Q 0 estimator (Intercept) -0.04 0.09 -0.42 0.68 -0.22 0.14 99 Y
simplest_design 851 Q 0 estimator (Intercept) -0.14 0.09 -1.57 0.12 -0.32 0.04 99 Y
simplest_design 852 Q 0 estimator (Intercept) 0.08 0.09 0.93 0.36 -0.09 0.25 99 Y
simplest_design 853 Q 0 estimator (Intercept) -0.03 0.09 -0.30 0.76 -0.20 0.15 99 Y
simplest_design 854 Q 0 estimator (Intercept) 0.01 0.10 0.10 0.92 -0.19 0.20 99 Y
simplest_design 855 Q 0 estimator (Intercept) 0.14 0.09 1.48 0.14 -0.05 0.33 99 Y
simplest_design 856 Q 0 estimator (Intercept) -0.06 0.10 -0.61 0.55 -0.27 0.14 99 Y
simplest_design 857 Q 0 estimator (Intercept) 0.13 0.11 1.20 0.23 -0.08 0.34 99 Y
simplest_design 858 Q 0 estimator (Intercept) -0.05 0.11 -0.50 0.62 -0.26 0.16 99 Y
simplest_design 859 Q 0 estimator (Intercept) -0.08 0.10 -0.80 0.42 -0.29 0.12 99 Y
simplest_design 860 Q 0 estimator (Intercept) -0.16 0.10 -1.59 0.12 -0.36 0.04 99 Y
simplest_design 861 Q 0 estimator (Intercept) -0.12 0.10 -1.19 0.23 -0.31 0.08 99 Y
simplest_design 862 Q 0 estimator (Intercept) 0.09 0.09 1.00 0.32 -0.09 0.28 99 Y
simplest_design 863 Q 0 estimator (Intercept) 0.08 0.10 0.75 0.46 -0.13 0.29 99 Y
simplest_design 864 Q 0 estimator (Intercept) -0.06 0.10 -0.55 0.58 -0.26 0.15 99 Y
simplest_design 865 Q 0 estimator (Intercept) 0.04 0.10 0.41 0.68 -0.15 0.23 99 Y
simplest_design 866 Q 0 estimator (Intercept) 0.04 0.10 0.42 0.68 -0.16 0.25 99 Y
simplest_design 867 Q 0 estimator (Intercept) -0.07 0.10 -0.66 0.51 -0.27 0.13 99 Y
simplest_design 868 Q 0 estimator (Intercept) 0.01 0.10 0.13 0.90 -0.18 0.21 99 Y
simplest_design 869 Q 0 estimator (Intercept) 0.07 0.09 0.84 0.40 -0.10 0.25 99 Y
simplest_design 870 Q 0 estimator (Intercept) -0.06 0.09 -0.61 0.54 -0.24 0.13 99 Y
simplest_design 871 Q 0 estimator (Intercept) -0.12 0.09 -1.31 0.19 -0.29 0.06 99 Y
simplest_design 872 Q 0 estimator (Intercept) -0.06 0.10 -0.66 0.51 -0.25 0.13 99 Y
simplest_design 873 Q 0 estimator (Intercept) -0.03 0.09 -0.30 0.77 -0.21 0.15 99 Y
simplest_design 874 Q 0 estimator (Intercept) 0.05 0.09 0.60 0.55 -0.13 0.23 99 Y
simplest_design 875 Q 0 estimator (Intercept) -0.04 0.09 -0.40 0.69 -0.22 0.15 99 Y
simplest_design 876 Q 0 estimator (Intercept) 0.23 0.10 2.35 0.02 0.04 0.43 99 Y
simplest_design 877 Q 0 estimator (Intercept) 0.07 0.10 0.73 0.47 -0.12 0.26 99 Y
simplest_design 878 Q 0 estimator (Intercept) -0.03 0.10 -0.31 0.76 -0.24 0.17 99 Y
simplest_design 879 Q 0 estimator (Intercept) 0.08 0.10 0.80 0.42 -0.11 0.27 99 Y
simplest_design 880 Q 0 estimator (Intercept) -0.04 0.10 -0.42 0.68 -0.24 0.15 99 Y
simplest_design 881 Q 0 estimator (Intercept) -0.09 0.10 -0.89 0.37 -0.30 0.11 99 Y
simplest_design 882 Q 0 estimator (Intercept) -0.15 0.09 -1.69 0.09 -0.32 0.03 99 Y
simplest_design 883 Q 0 estimator (Intercept) 0.11 0.09 1.15 0.25 -0.08 0.29 99 Y
simplest_design 884 Q 0 estimator (Intercept) 0.02 0.10 0.17 0.86 -0.18 0.22 99 Y
simplest_design 885 Q 0 estimator (Intercept) -0.06 0.10 -0.58 0.56 -0.25 0.14 99 Y
simplest_design 886 Q 0 estimator (Intercept) -0.01 0.10 -0.12 0.90 -0.20 0.18 99 Y
simplest_design 887 Q 0 estimator (Intercept) -0.13 0.09 -1.38 0.17 -0.31 0.06 99 Y
simplest_design 888 Q 0 estimator (Intercept) 0.11 0.09 1.27 0.21 -0.06 0.29 99 Y
simplest_design 889 Q 0 estimator (Intercept) 0.07 0.10 0.67 0.51 -0.14 0.27 99 Y
simplest_design 890 Q 0 estimator (Intercept) -0.02 0.09 -0.17 0.86 -0.20 0.17 99 Y
simplest_design 891 Q 0 estimator (Intercept) -0.16 0.08 -1.93 0.06 -0.33 0.00 99 Y
simplest_design 892 Q 0 estimator (Intercept) 0.07 0.11 0.70 0.49 -0.14 0.28 99 Y
simplest_design 893 Q 0 estimator (Intercept) -0.06 0.10 -0.60 0.55 -0.26 0.14 99 Y
simplest_design 894 Q 0 estimator (Intercept) 0.05 0.11 0.45 0.66 -0.16 0.26 99 Y
simplest_design 895 Q 0 estimator (Intercept) 0.15 0.09 1.59 0.11 -0.04 0.34 99 Y
simplest_design 896 Q 0 estimator (Intercept) 0.05 0.09 0.50 0.62 -0.14 0.23 99 Y
simplest_design 897 Q 0 estimator (Intercept) -0.06 0.11 -0.54 0.59 -0.29 0.17 99 Y
simplest_design 898 Q 0 estimator (Intercept) -0.23 0.11 -2.02 0.05 -0.46 0.00 99 Y
simplest_design 899 Q 0 estimator (Intercept) 0.01 0.10 0.14 0.89 -0.19 0.21 99 Y
simplest_design 900 Q 0 estimator (Intercept) -0.07 0.10 -0.68 0.50 -0.26 0.13 99 Y
simplest_design 901 Q 0 estimator (Intercept) 0.00 0.09 0.04 0.97 -0.17 0.18 99 Y
simplest_design 902 Q 0 estimator (Intercept) 0.02 0.09 0.20 0.84 -0.17 0.20 99 Y
simplest_design 903 Q 0 estimator (Intercept) -0.07 0.09 -0.76 0.45 -0.26 0.11 99 Y
simplest_design 904 Q 0 estimator (Intercept) -0.10 0.10 -1.08 0.28 -0.30 0.09 99 Y
simplest_design 905 Q 0 estimator (Intercept) 0.02 0.10 0.17 0.86 -0.18 0.21 99 Y
simplest_design 906 Q 0 estimator (Intercept) -0.04 0.10 -0.41 0.68 -0.24 0.16 99 Y
simplest_design 907 Q 0 estimator (Intercept) 0.04 0.09 0.48 0.63 -0.14 0.23 99 Y
simplest_design 908 Q 0 estimator (Intercept) 0.07 0.10 0.67 0.51 -0.13 0.27 99 Y
simplest_design 909 Q 0 estimator (Intercept) -0.11 0.11 -1.04 0.30 -0.33 0.10 99 Y
simplest_design 910 Q 0 estimator (Intercept) 0.10 0.09 1.11 0.27 -0.08 0.29 99 Y
simplest_design 911 Q 0 estimator (Intercept) 0.11 0.11 0.99 0.32 -0.11 0.32 99 Y
simplest_design 912 Q 0 estimator (Intercept) 0.18 0.10 1.90 0.06 -0.01 0.37 99 Y
simplest_design 913 Q 0 estimator (Intercept) 0.02 0.09 0.26 0.79 -0.16 0.21 99 Y
simplest_design 914 Q 0 estimator (Intercept) 0.04 0.11 0.38 0.70 -0.17 0.25 99 Y
simplest_design 915 Q 0 estimator (Intercept) 0.08 0.09 0.96 0.34 -0.09 0.25 99 Y
simplest_design 916 Q 0 estimator (Intercept) -0.12 0.09 -1.31 0.19 -0.31 0.06 99 Y
simplest_design 917 Q 0 estimator (Intercept) -0.02 0.10 -0.24 0.81 -0.22 0.17 99 Y
simplest_design 918 Q 0 estimator (Intercept) 0.02 0.09 0.27 0.79 -0.16 0.21 99 Y
simplest_design 919 Q 0 estimator (Intercept) 0.00 0.10 0.02 0.98 -0.20 0.20 99 Y
simplest_design 920 Q 0 estimator (Intercept) -0.14 0.10 -1.40 0.16 -0.33 0.06 99 Y
simplest_design 921 Q 0 estimator (Intercept) 0.06 0.10 0.62 0.53 -0.14 0.26 99 Y
simplest_design 922 Q 0 estimator (Intercept) -0.13 0.11 -1.19 0.24 -0.35 0.09 99 Y
simplest_design 923 Q 0 estimator (Intercept) 0.03 0.09 0.35 0.73 -0.15 0.22 99 Y
simplest_design 924 Q 0 estimator (Intercept) 0.03 0.10 0.30 0.77 -0.17 0.23 99 Y
simplest_design 925 Q 0 estimator (Intercept) 0.05 0.10 0.46 0.65 -0.16 0.25 99 Y
simplest_design 926 Q 0 estimator (Intercept) -0.09 0.10 -0.86 0.39 -0.29 0.12 99 Y
simplest_design 927 Q 0 estimator (Intercept) -0.10 0.09 -1.07 0.29 -0.28 0.08 99 Y
simplest_design 928 Q 0 estimator (Intercept) 0.11 0.11 0.97 0.33 -0.11 0.33 99 Y
simplest_design 929 Q 0 estimator (Intercept) 0.15 0.09 1.55 0.12 -0.04 0.34 99 Y
simplest_design 930 Q 0 estimator (Intercept) -0.08 0.11 -0.74 0.46 -0.30 0.14 99 Y
simplest_design 931 Q 0 estimator (Intercept) -0.01 0.09 -0.09 0.93 -0.20 0.18 99 Y
simplest_design 932 Q 0 estimator (Intercept) 0.18 0.10 1.79 0.08 -0.02 0.38 99 Y
simplest_design 933 Q 0 estimator (Intercept) -0.10 0.09 -1.08 0.28 -0.28 0.08 99 Y
simplest_design 934 Q 0 estimator (Intercept) -0.11 0.10 -1.15 0.25 -0.30 0.08 99 Y
simplest_design 935 Q 0 estimator (Intercept) -0.19 0.10 -1.88 0.06 -0.40 0.01 99 Y
simplest_design 936 Q 0 estimator (Intercept) 0.11 0.10 1.16 0.25 -0.08 0.31 99 Y
simplest_design 937 Q 0 estimator (Intercept) -0.13 0.09 -1.42 0.16 -0.31 0.05 99 Y
simplest_design 938 Q 0 estimator (Intercept) 0.20 0.10 2.06 0.04 0.01 0.40 99 Y
simplest_design 939 Q 0 estimator (Intercept) -0.01 0.11 -0.10 0.92 -0.23 0.20 99 Y
simplest_design 940 Q 0 estimator (Intercept) 0.08 0.10 0.83 0.41 -0.11 0.27 99 Y
simplest_design 941 Q 0 estimator (Intercept) -0.02 0.10 -0.22 0.83 -0.23 0.18 99 Y
simplest_design 942 Q 0 estimator (Intercept) 0.20 0.10 2.11 0.04 0.01 0.39 99 Y
simplest_design 943 Q 0 estimator (Intercept) -0.02 0.10 -0.25 0.80 -0.21 0.17 99 Y
simplest_design 944 Q 0 estimator (Intercept) 0.03 0.10 0.31 0.75 -0.18 0.24 99 Y
simplest_design 945 Q 0 estimator (Intercept) -0.01 0.10 -0.06 0.95 -0.20 0.19 99 Y
simplest_design 946 Q 0 estimator (Intercept) -0.03 0.11 -0.28 0.78 -0.24 0.18 99 Y
simplest_design 947 Q 0 estimator (Intercept) -0.13 0.10 -1.29 0.20 -0.34 0.07 99 Y
simplest_design 948 Q 0 estimator (Intercept) -0.07 0.09 -0.73 0.47 -0.25 0.12 99 Y
simplest_design 949 Q 0 estimator (Intercept) 0.18 0.10 1.76 0.08 -0.02 0.37 99 Y
simplest_design 950 Q 0 estimator (Intercept) 0.01 0.10 0.11 0.91 -0.19 0.22 99 Y
simplest_design 951 Q 0 estimator (Intercept) 0.10 0.11 0.92 0.36 -0.12 0.33 99 Y
simplest_design 952 Q 0 estimator (Intercept) -0.04 0.10 -0.41 0.68 -0.23 0.15 99 Y
simplest_design 953 Q 0 estimator (Intercept) -0.01 0.09 -0.10 0.92 -0.18 0.17 99 Y
simplest_design 954 Q 0 estimator (Intercept) -0.05 0.10 -0.47 0.64 -0.24 0.15 99 Y
simplest_design 955 Q 0 estimator (Intercept) 0.06 0.10 0.62 0.54 -0.14 0.26 99 Y
simplest_design 956 Q 0 estimator (Intercept) 0.04 0.11 0.37 0.71 -0.17 0.25 99 Y
simplest_design 957 Q 0 estimator (Intercept) 0.09 0.11 0.80 0.42 -0.13 0.30 99 Y
simplest_design 958 Q 0 estimator (Intercept) 0.11 0.10 1.08 0.28 -0.09 0.30 99 Y
simplest_design 959 Q 0 estimator (Intercept) 0.15 0.10 1.51 0.14 -0.05 0.35 99 Y
simplest_design 960 Q 0 estimator (Intercept) 0.05 0.09 0.55 0.59 -0.14 0.24 99 Y
simplest_design 961 Q 0 estimator (Intercept) 0.16 0.10 1.61 0.11 -0.04 0.35 99 Y
simplest_design 962 Q 0 estimator (Intercept) -0.12 0.10 -1.15 0.25 -0.33 0.09 99 Y
simplest_design 963 Q 0 estimator (Intercept) 0.05 0.09 0.60 0.55 -0.12 0.23 99 Y
simplest_design 964 Q 0 estimator (Intercept) 0.12 0.10 1.13 0.26 -0.09 0.32 99 Y
simplest_design 965 Q 0 estimator (Intercept) 0.07 0.11 0.68 0.50 -0.14 0.28 99 Y
simplest_design 966 Q 0 estimator (Intercept) -0.02 0.09 -0.16 0.87 -0.20 0.17 99 Y
simplest_design 967 Q 0 estimator (Intercept) -0.04 0.10 -0.45 0.65 -0.24 0.15 99 Y
simplest_design 968 Q 0 estimator (Intercept) -0.09 0.09 -1.00 0.32 -0.27 0.09 99 Y
simplest_design 969 Q 0 estimator (Intercept) -0.06 0.09 -0.73 0.47 -0.23 0.11 99 Y
simplest_design 970 Q 0 estimator (Intercept) -0.07 0.11 -0.65 0.52 -0.28 0.14 99 Y
simplest_design 971 Q 0 estimator (Intercept) 0.24 0.10 2.42 0.02 0.04 0.44 99 Y
simplest_design 972 Q 0 estimator (Intercept) 0.16 0.10 1.71 0.09 -0.03 0.35 99 Y
simplest_design 973 Q 0 estimator (Intercept) -0.01 0.10 -0.08 0.94 -0.20 0.18 99 Y
simplest_design 974 Q 0 estimator (Intercept) -0.06 0.10 -0.61 0.54 -0.25 0.13 99 Y
simplest_design 975 Q 0 estimator (Intercept) -0.13 0.10 -1.37 0.17 -0.32 0.06 99 Y
simplest_design 976 Q 0 estimator (Intercept) -0.12 0.10 -1.13 0.26 -0.32 0.09 99 Y
simplest_design 977 Q 0 estimator (Intercept) -0.01 0.09 -0.16 0.87 -0.20 0.17 99 Y
simplest_design 978 Q 0 estimator (Intercept) -0.09 0.10 -0.91 0.36 -0.29 0.11 99 Y
simplest_design 979 Q 0 estimator (Intercept) -0.12 0.11 -1.12 0.27 -0.33 0.09 99 Y
simplest_design 980 Q 0 estimator (Intercept) 0.11 0.10 1.10 0.27 -0.09 0.32 99 Y
simplest_design 981 Q 0 estimator (Intercept) 0.00 0.09 0.05 0.96 -0.18 0.19 99 Y
simplest_design 982 Q 0 estimator (Intercept) -0.02 0.10 -0.20 0.84 -0.21 0.17 99 Y
simplest_design 983 Q 0 estimator (Intercept) -0.03 0.10 -0.28 0.78 -0.23 0.17 99 Y
simplest_design 984 Q 0 estimator (Intercept) 0.10 0.09 1.14 0.26 -0.08 0.29 99 Y
simplest_design 985 Q 0 estimator (Intercept) 0.12 0.11 1.06 0.29 -0.10 0.33 99 Y
simplest_design 986 Q 0 estimator (Intercept) 0.10 0.10 1.06 0.29 -0.09 0.30 99 Y
simplest_design 987 Q 0 estimator (Intercept) 0.06 0.08 0.66 0.51 -0.11 0.22 99 Y
simplest_design 988 Q 0 estimator (Intercept) 0.03 0.10 0.34 0.74 -0.16 0.23 99 Y
simplest_design 989 Q 0 estimator (Intercept) 0.09 0.09 0.93 0.36 -0.10 0.27 99 Y
simplest_design 990 Q 0 estimator (Intercept) 0.06 0.10 0.61 0.54 -0.14 0.26 99 Y
simplest_design 991 Q 0 estimator (Intercept) 0.11 0.11 1.01 0.32 -0.11 0.32 99 Y
simplest_design 992 Q 0 estimator (Intercept) 0.02 0.10 0.23 0.82 -0.18 0.23 99 Y
simplest_design 993 Q 0 estimator (Intercept) -0.03 0.09 -0.27 0.78 -0.21 0.16 99 Y
simplest_design 994 Q 0 estimator (Intercept) 0.03 0.09 0.32 0.75 -0.16 0.22 99 Y
simplest_design 995 Q 0 estimator (Intercept) -0.14 0.10 -1.46 0.15 -0.33 0.05 99 Y
simplest_design 996 Q 0 estimator (Intercept) 0.01 0.11 0.10 0.92 -0.21 0.23 99 Y
simplest_design 997 Q 0 estimator (Intercept) 0.21 0.10 2.09 0.04 0.01 0.41 99 Y
simplest_design 998 Q 0 estimator (Intercept) -0.19 0.11 -1.81 0.07 -0.40 0.02 99 Y
simplest_design 999 Q 0 estimator (Intercept) 0.14 0.10 1.33 0.19 -0.07 0.35 99 Y
simplest_design 1000 Q 0 estimator (Intercept) 0.04 0.10 0.41 0.68 -0.16 0.24 99 Y

1.4.9 The simplest possible design?: Diagnosis

Once you have simulated many times you can “diagnose”.

This is the next topic

1.5 Design declaration-diagnosis-redesign workflow: Diagnosis

1.5.1 Diagnosis by hand

Once you have simulated many times you can “diagnose”.

For instance we can ask about bias: the average difference between the estimand and the estimate:

some_runs |> mutate(error = estimate - estimand) |>
  summarize(mean_estimate = mean(estimate), 
            mean_estimand = mean(estimand), 
            bias = mean(error)) 
mean_estimate mean_estimand bias
0 0 0

1.5.2 The simplest possible design?

diagnose_design() does this in one step for a set of common “diagnosands”:

diagnosis <-
  simplest_design |>
  diagnose_design()
Design N Sims Mean Estimand Mean Estimate Bias SD Estimate RMSE Power Coverage
simplest_design 500 0.00 -0.00 -0.00 0.10 0.10 0.05 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

1.5.3 What is the diagnosis object?

The diagnosis object is also a list; of class diagnosis

names(diagnosis)
[1] "simulations_df"       "diagnosands_df"       "diagnosand_names"    
[4] "group_by_set"         "parameters_df"        "bootstrap_replicates"
[7] "bootstrap_sims"       "duration"            
class(diagnosis)
[1] "diagnosis"

1.5.4 What is the diagnosis object?

diagnosis$simulations_df |> 
  head() 
design sim_ID inquiry estimand estimator term estimate std.error statistic p.value conf.low conf.high df outcome
simplest_design 1 Q 0 estimator (Intercept) 0.03 0.09 0.31 0.76 -0.16 0.21 99 Y
simplest_design 2 Q 0 estimator (Intercept) 0.10 0.09 1.07 0.29 -0.09 0.29 99 Y
simplest_design 3 Q 0 estimator (Intercept) -0.16 0.10 -1.54 0.13 -0.37 0.05 99 Y
simplest_design 4 Q 0 estimator (Intercept) -0.08 0.11 -0.72 0.48 -0.30 0.14 99 Y
simplest_design 5 Q 0 estimator (Intercept) -0.14 0.10 -1.34 0.18 -0.34 0.07 99 Y
simplest_design 6 Q 0 estimator (Intercept) -0.08 0.09 -0.90 0.37 -0.26 0.10 99 Y

1.5.5 What is the diagnosis object?

diagnosis$diagnosands_df |> 
  head() 
design inquiry estimator outcome term mean_estimand se(mean_estimand) mean_estimate se(mean_estimate) bias se(bias) sd_estimate se(sd_estimate) rmse se(rmse) power se(power) coverage se(coverage) n_sims
simplest_design Q estimator Y (Intercept) 0 0 0 0 0 0 0.1 0 0.1 0 0.05 0.01 0.95 0.01 500

1.5.6 What is the diagnosis object?

diagnosis$bootstrap_replicates |> 
  head()
design bootstrap_id inquiry estimator outcome term mean_estimand mean_estimate bias sd_estimate rmse power coverage
simplest_design 1 Q estimator Y (Intercept) 0 0.00 0.00 0.1 0.10 0.05 0.95
simplest_design 2 Q estimator Y (Intercept) 0 -0.01 -0.01 0.1 0.11 0.06 0.94
simplest_design 3 Q estimator Y (Intercept) 0 -0.01 -0.01 0.1 0.10 0.05 0.95
simplest_design 4 Q estimator Y (Intercept) 0 -0.01 -0.01 0.1 0.10 0.05 0.95
simplest_design 5 Q estimator Y (Intercept) 0 0.00 0.00 0.1 0.10 0.05 0.95
simplest_design 6 Q estimator Y (Intercept) 0 0.00 0.00 0.1 0.10 0.05 0.95

1.5.7 Diagnosis: Bootstraps

  • The bootstraps dataframe is produced by resampling from the simulations dataframe and producing a diagnosis dataframe from each resampling.

  • This lets us generate estimates of uncertainty around our diagnosands.

  • It can be controlled thus:

diagnose_design(
  ...,
  bootstrap_sims = 100
)

1.5.8 After Diagnosis

It’s reshapeable: as a tidy dataframe, ready for graphing

diagnosis |> 
  tidy() 
design inquiry estimator outcome term diagnosand estimate std.error conf.low conf.high
simplest_design Q estimator Y (Intercept) mean_estimand 0.00 0.00 0.00 0.00
simplest_design Q estimator Y (Intercept) mean_estimate 0.00 0.00 -0.01 0.00
simplest_design Q estimator Y (Intercept) bias 0.00 0.00 -0.01 0.00
simplest_design Q estimator Y (Intercept) sd_estimate 0.10 0.00 0.10 0.11
simplest_design Q estimator Y (Intercept) rmse 0.10 0.00 0.10 0.11
simplest_design Q estimator Y (Intercept) power 0.05 0.01 0.03 0.07
simplest_design Q estimator Y (Intercept) coverage 0.95 0.01 0.93 0.97

1.5.9 After Diagnosis

It’s reshapeable: as a tidy dataframe, ready for graphing

diagnosis |> 
  tidy() |> 
  ggplot(aes(estimate, diagnosand)) + geom_point() + 
  geom_errorbarh(aes(xmax = conf.high, xmin = conf.low, height = .2))

1.5.10 After Diagnosis: Tables

Or turn into a formatted table:

diagnosis |> 
  reshape_diagnosis() 
Design Inquiry Estimator Outcome Term N Sims Mean Estimand Mean Estimate Bias SD Estimate RMSE Power Coverage
simplest_design Q estimator Y (Intercept) 500 0.00 -0.00 -0.00 0.10 0.10 0.05 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

1.5.11 Advanced Diagnosis: Variations

DeclareDesign:::default_diagnosands
    mean_estimand <- mean(estimand)
    mean_estimate <- mean(estimate)
    bias <- mean(estimate - estimand)
    sd_estimate <- sd(estimate)
    rmse <- sqrt(mean((estimate - estimand)^2))
    power <- mean(p.value <= alpha)
    coverage <- mean(estimand <= conf.high & estimand >= conf.low)

1.5.12 Advanced Diagnosis: Other diagnosands

    mean_se = mean(std.error)
    type_s_rate = mean((sign(estimate) != sign(estimand))[p.value <= alpha])
    exaggeration_ratio = mean((estimate/estimand)[p.value <= alpha])
    var_estimate = pop.var(estimate)
    mean_var_hat = mean(std.error^2)
    prop_pos_sig = estimate > 0 & p.value <= alpha
    mean_ci_length = mean(conf.high - conf.low)

1.5.13 Advanced Diagnosis: Custom diagnosands

my_diagnosands <-
  declare_diagnosands(median_bias = median(estimate - estimand))

diagnose_design(simplest_design, diagnosands = my_diagnosands, sims = 10) |>
  reshape_diagnosis() |> kable() |> kable_styling(font_size = 20)
Design Inquiry Estimator Outcome Term N Sims Median Bias
simplest_design Q estimator Y (Intercept) 10 -0.02
(0.04)

1.5.14 Advanced Diagnosis: Adding diagnosands to a design

simplest_design <- 
  set_diagnosands(simplest_design, my_diagnosands)

simplest_design |> diagnose_design(sims = 10)|>
  reshape_diagnosis() |> kable() |> kable_styling(font_size = 20)
Design Inquiry Estimator Outcome Term N Sims Median Bias
simplest_design Q estimator Y (Intercept) 10 -0.01
(0.04)

1.5.15 Advanced Diagnosis: Diagnosing multiple designs

You can diagnose multiple designs or a list of designs

list(dum = simplest_design, dee = simplest_design) |>
  diagnose_design(sims = 5) |>
  reshape_diagnosis() |> 
  kable() |> 
  kable_styling(font_size = 20)
Design Inquiry Estimator Outcome Term N Sims Median Bias
dum Q estimator Y (Intercept) 5 -0.08
(0.08)
dee Q estimator Y (Intercept) 5 -0.08
(0.08)

1.5.16 Advanced Diagnosis: Diagnosing in groups

You can partition the simulations data frame into groups before calculating diagnosands.

grouped_diagnosis <- 
  
  simplest_design |>
  diagnose_design(
    make_groups = vars(significant = p.value <= 0.05),
    sims = 500
  )
Design Significant N Sims Mean Estimand Mean Estimate Bias SD Estimate RMSE Power Coverage
design_1 FALSE 474 0.00 -0.00 -0.00 0.09 0.09 0.00 1.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
design_1 TRUE 26 0.00 -0.02 -0.02 0.23 0.23 1.00 0.00
(0.00) (0.04) (0.04) (0.01) (0.01) (0.00) (0.00)

Note especially the mean estimate, the power, the coverage, the RMSE, and the bias. (Bias is not large because we have both under and over estimates)

1.5.17 Significance filter

grouped_diagnosis$simulations_df |>
  ggplot(aes(estimate, p.value, color = significant)) + geom_point()

1.5.18 Advanced Diagnosis: Multistage simulation

  • Usually a design simulation simulates “from the top”: going from the beginning to the end of the design in each run and repeating
  • But sometimes you might want to follow a tree like structure and simulate different steps a different number of times

1.5.19 Advanced Diagnosis: Multistage simulation

Consider for instance this sampling design:

sampling_design <- 
  
  declare_model(N = 500, Y = 1 + rnorm(N, sd = 10)) +
  declare_inquiry(Q = mean(Y)) +
  declare_sampling(S = complete_rs(N = N, n = 100)) + 
  declare_estimator(Y ~ 1)

1.5.20 Advanced Diagnosis: Multistage simulation

Compare these two diagnoses:

diagnosis_1 <- diagnose_design(sampling_design, sims = c(5000, 1, 1, 1)) 
diagnosis_2 <- diagnose_design(sampling_design, sims = c(1, 5000, 1, 1))
diagnosis N Sims Mean Estimand Mean Estimate Bias SD Estimate RMSE Power Coverage
diagnosis_1 5000 1.00 1.00 -0.00 1.01 0.90 0.17 0.97
diagnosis_1 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
diagnosis_2 5000 1.22 1.22 -0.00 0.91 0.91 0.20 0.97
diagnosis_2 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

In the second the estimate is drawn just once. The SD of the estimate is lower. But the RMSE is not very different.

1.5.21 Spotting design problems with diagnosis

Diagnosis alerts to problems in a design. Consider the following simple alternative design.

simplest_design_2 <- 
  
  declare_model(N = 100, Y = rnorm(N)) +
  declare_inquiry(Q = mean(Y)) +
  declare_estimator(Y ~ 1)

Here we define the inquiry as the sample average \(Y\) (instead of the population mean). But otherwise things stay the same.

What do we think of this design?

1.5.22 Spotting design problems with diagnosis

Here is the diagnosis

Design N Sims Mean Estimand Mean Estimate Bias SD Estimate RMSE Power Coverage
simplest_design_2 500 -0.00 -0.00 0.00 0.10 0.00 0.04 1.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
  • Why is coverage so high? is that OK?
  • Why is the RMSE 0 but the SD of the estimate > 0? is that OK?
    • Is it because the RMSE is too low?
    • Or the standard error is too large?

1.5.23 It depends on the inquiry

  • If we are really interested in the sample average then our standard error is off: we should have no error at all!
  • If we are really interested in the population average then our inquiry is badly defined: it should not be redefined on each run!

1.6 Design declaration-diagnosis-redesign workflow: Redesign

1.6.1 Redesign

Redesign is the process of taking a design and modifying it in some way.

There are a few ways to do this:

  1. Just make a new design using modified code
  2. Take a design and alter some steps using replace_step, insert_step or delete_step
  3. Modify a design parameter using redesign

we will focus on the third approach

1.6.2 Redesign

  • A design parameter is a modifiable quantity of a design.

  • These quantities are objects that were in your global environment when you made your design, get referred to explicitly in your design, and got scooped up when the design was formed.

  • In our simplest design above we had a fixed N, but we could make N a modifiable quantity like this:

N <- 100

simplest_design_N <- 
  
  declare_model(N = N, Y = rnorm(N)) +
  declare_inquiry(Q = 0) +
  declare_estimator(Y ~ 1)

1.6.3 Redesign

N <- 100

simplest_design_N <- 
  
  declare_model(N = N, Y = rnorm(N)) +
  declare_inquiry(Q = 0) +
  declare_estimator(Y ~ 1)

Note that N is defined in memory; and it gets called in one of the steps. It has now become a parameter of the design and it can be modified using redesign.

1.6.4 Simple Redesign

Here is a version of the design with N = 200:

design_200 <- simplest_design_N |> redesign(N = 200)
  
design_200 |> draw_data() |> nrow()
[1] 200

1.6.5 Redesigning to a list

Here is a list of three different designs with different Ns.

design_Ns <- simplest_design_N |> redesign(N = c(200, 400, 800))

design_Ns |> lapply(draw_data) |> lapply(nrow)
$design_1
[1] 200

$design_2
[1] 400

$design_3
[1] 800

1.6.6 Redesigning to a list

The good thing here is that it is now easy to diagnose over multiple designs and compare diagnoses. The parameter names then end up in the diagnosis_df

Consider this:

N <- 100
m <- 0

design <- 
  declare_model(N = N, Y = rnorm(N, m)) +
  declare_inquiry(Q = m) +
  declare_estimator(Y ~ 1) 

Then:

designs <-  redesign(design, N = c(100, 200, 300), m = c(0, .1, .2))
  
designs |> diagnose_design() |> tidy() 

1.6.7 Redesigning to a list

Output:

designs |> diagnose_design() |> tidy() 
N m diagnosand estimate std.error conf.low conf.high
100 0.0 mean_estimand 0.00 0.00 0.00 0.00
100 0.0 mean_estimate 0.00 0.00 -0.01 0.01
100 0.0 bias 0.00 0.00 -0.01 0.01
100 0.0 sd_estimate 0.10 0.00 0.10 0.11
200 0.0 mean_estimand 0.00 0.00 0.00 0.00
200 0.0 mean_estimate 0.00 0.00 -0.01 0.00
200 0.1 mean_estimand 0.10 0.00 0.10 0.10
200 0.1 mean_estimate 0.10 0.00 0.09 0.10
300 0.2 bias 0.00 0.00 0.00 0.00
300 0.2 sd_estimate 0.06 0.00 0.05 0.06
300 0.2 rmse 0.06 0.00 0.05 0.06
300 0.2 power 0.93 0.01 0.91 0.95
300 0.2 coverage 0.95 0.01 0.92 0.97

1.6.8 Redesigning to a list

Graphing after redesign is especially easy:

designs |> diagnose_design() |> 
  tidy() |>
  filter(diagnosand %in% c("power", "rmse")) |> 
  ggplot(aes(N, estimate, color = factor(m))) + 
  geom_line() + 
  facet_wrap(~diagnosand)

Power depends on N and m, rmse depends on N only

1.6.9 Redesign with vector arguments

When redesigning with arguments that are vectors, use list() in redesign, with each list item representing a design you wish to create

prob_each <- c(.1, .5, .4)

design_multi  <- 
  declare_model(N = 10) +
  declare_assignment(Z = complete_ra(N = N, prob_each = prob_each))

## returns two designs

designs <- design_multi |> 
  redesign(prob_each = list(c(.2, .5, .3), c(0, .5, .5)))
  
designs |> lapply(draw_data)

1.6.10 Redesign warnings

A parameter has to be called correctly. And you get no warning if you misname.

simplest_design_N  |> redesign(n = 200) |> draw_data() |> nrow()
[1] 100

why not 200?

1.6.11 Redesign warnings

A parameter has to be called explicitly

N <- 100

my_N <- function(n = N) n

simplest_design_N2 <- 
  
  declare_model(N = my_N(), Y = rnorm(N)) +
  declare_inquiry(Q = 0) +
  declare_estimator(Y ~ 1)

simplest_design_N2 |> redesign(N = 200) |> draw_data() |> nrow()
[1] 100

why not 200?

1.6.12 Redesign warnings

A parameter has to be called explicitly

N <- 100

my_N <- function(n = N) n

simplest_design_N2 <- 
  
  declare_model(N = my_N(N), Y = rnorm(N)) +
  declare_inquiry(Q = 0) +
  declare_estimator(Y ~ 1)

simplest_design_N2 |> redesign(N = 200) |> draw_data() |> nrow()
[1] 200

OK

1.6.13 Redesign with a function

Here is an example of redesigning where the “parameter” is a function

new_N <- function(n, factor = 1.31) n*factor

simplest_design_N2 |> redesign(my_N = new_N) |> draw_data() |> nrow()
[1] 131

1.7 Using a design

What can you do with a design once you have it?

We will start with a very simple experimental design (more on the components of this later)

b <-1
N <- 100
design <- 
  declare_model(N = N, U = rnorm(N), potential_outcomes(Y ~ b * Z + U)) + 
  declare_assignment(Z = simple_ra(N), Y = reveal_outcomes(Y ~ Z)) + 
  declare_inquiry(ate = mean(Y_Z_1 - Y_Z_0)) + 
  declare_estimator(Y ~ Z, inquiry = "ate", .method = lm_robust)

1.7.1 Make data from the design

data <- draw_data(design)

data |> head () |> kable() |> kable_styling(font_size = 20)
ID U Y_Z_0 Y_Z_1 Z Y
001 0.8939241 0.8939241 1.8939241 1 1.8939241
002 1.3350334 1.3350334 2.3350334 1 2.3350334
003 0.8329075 0.8329075 1.8329075 1 1.8329075
004 -0.2886946 -0.2886946 0.7113054 0 -0.2886946
005 -0.3062044 -0.3062044 0.6937956 1 0.6937956
006 0.6443779 0.6443779 1.6443779 1 1.6443779

1.7.2 Make data from the design

Play with the data:

lm_robust(Y ~ Z, data = data) |>
  tidy() |>
  kable(digits = 2) |> 
  kable_styling(font_size = 20)
term estimate std.error statistic p.value conf.low conf.high df outcome
(Intercept) -0.21 0.14 -1.50 0.14 -0.48 0.07 98 Y
Z 1.27 0.19 6.69 0.00 0.89 1.65 98 Y

1.7.3 Draw estimands

draw_estimands(design) |>
  kable(digits = 2) |> 
  kable_styling(font_size = 20)
inquiry estimand
ate 1

1.7.4 Draw estimates

draw_estimates(design) |> 
  kable(digits = 2) |> 
  kable_styling(font_size = 20)
estimator term estimate std.error statistic p.value conf.low conf.high df outcome inquiry
estimator Z 1.06 0.19 5.57 0 0.69 1.44 98 Y ate

1.7.5 Get estimates

Using your actual data:

get_estimates(design, data) |>
  kable(digits = 2) |> 
  kable_styling(font_size = 20)
estimator term estimate std.error statistic p.value conf.low conf.high df outcome inquiry
estimator Z 1.27 0.19 6.69 0 0.89 1.65 98 Y ate

1.7.6 Simulate design

simulate_design(design, sims = 3) |>
  kable(digits = 2) |> 
  kable_styling(font_size = 16)
design sim_ID inquiry estimand estimator term estimate std.error statistic p.value conf.low conf.high df outcome
design 1 ate 1 estimator Z 1.50 0.19 7.92 0 1.12 1.88 98 Y
design 2 ate 1 estimator Z 1.27 0.19 6.64 0 0.89 1.65 98 Y
design 3 ate 1 estimator Z 0.87 0.19 4.58 0 0.49 1.24 98 Y

1.7.7 Diagnose design

design |> 
  diagnose_design(sims = 100) 
Mean Estimate Bias SD Estimate RMSE Power Coverage
1.00 0.00 0.19 0.19 1.00 0.95
(0.02) (0.02) (0.01) (0.01) (0.00) (0.02)

1.7.8 Redesign

new_design <-
  
  design |> redesign(b = 0)
  • Modify any arguments that are explicitly called on by design steps.
  • Or add, remove, or replace steps

1.7.9 Compare designs

redesign(design, N = 50) %>%
  
  compare_diagnoses(design) 
diagnosand mean_1 mean_2 mean_difference conf.low conf.high
mean_estimand 0.50 0.50 0.00 0.00 0.00
mean_estimate 0.48 0.50 0.02 -0.01 0.04
bias -0.02 0.00 0.02 -0.01 0.04
sd_estimate 0.28 0.20 -0.08 -0.10 -0.06
rmse 0.28 0.20 -0.08 -0.10 -0.06
power 0.38 0.71 0.32 0.26 0.37
coverage 0.97 0.96 -0.01 -0.04 0.01

1.7.10 Illustration of power calculation

Recall?: The power of a design is the probability that you will reject a null hypothesis

N <- 100
b <- .5

design <- 
  declare_model(N = N, 
    U = rnorm(N),
    potential_outcomes(Y ~ b * Z + U)) + 
  declare_assignment(Z = simple_ra(N),
                     Y = reveal_outcomes(Y ~ Z)) + 
  declare_inquiry(ate = mean(Y_Z_1 - Y_Z_0)) + 
  declare_estimator(Y ~ Z, inquiry = "ate", .method = lm_robust)

1.7.11 “Run” the design once

run_design(design)
Summary of a single 'run' of the design
inquiry estimand estimator term estimate std.error statistic p.value conf.low conf.high df outcome
ate 0.5 estimator Z 0.57 0.2 2.88 0 0.18 0.96 98 Y

1.7.12 Run it many times

sims_1 <- simulate_design(design) 

sims_1 |> select(sim_ID, estimate, p.value)
sim_ID estimate p.value
1 0.81 0.00
2 0.40 0.04
3 0.88 0.00
4 0.72 0.00
5 0.38 0.05
6 0.44 0.02

1.7.13 Power is mass of the sampling distribution of decisions under the model

sims_1 |>
  ggplot(aes(p.value)) + 
  geom_histogram(boundary = 0) +
  geom_vline(xintercept = .05, color = "red")

1.7.14 Power is mass of the sampling distribution of decisions under the model

redesign(design, b = 0) |> 
  simulate_design(sims = 10000) 

1.7.15 Design diagnosis does it all (over multiple designs)

  diagnose_design(design)
Mean Estimate Bias SD Estimate RMSE Power Coverage
0.50 0.00 0.20 0.20 0.70 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.7.16 Design diagnosis does it all

design |>
  redesign(b = c(0, 0.25, 0.5, 1)) |>
  diagnose_design()
b Mean Estimate Bias SD Estimate RMSE Power Coverage
0 -0.00 -0.00 0.20 0.20 0.05 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
0.25 0.25 -0.00 0.20 0.20 0.23 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
0.5 0.50 0.00 0.20 0.20 0.70 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
1 1.00 0.00 0.20 0.20 1.00 0.95
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1.8 Declaration: a deeper dive (Reference)

We start with a simple experimental design and then show ways to extend.

  • Variations to M and I are supported by the fabricatr package (and others)
  • Variations to D are supported by the randomizr package (and others)
  • Variations to A are supported by the estimatr package (and others)

1.8.1 Steps: A simple experimental design

N <- 100
b <- .5

design <- 
  declare_model(N = N, U = rnorm(N), 
                potential_outcomes(Y ~ b * Z + U)) + 
  declare_assignment(Z = simple_ra(N), Y = reveal_outcomes(Y ~ Z)) + 
  declare_inquiry(ate = mean(Y_Z_1 - Y_Z_0)) + 
  declare_estimator(Y ~ Z, inquiry = "ate", .method = lm_robust)

A few new elements here:

  • declare_model can be used much like mutate with multiple columns created in sequence
  • the potential_outcomes function is a special function that creates potential outcome columns
  • when you assign a treatment that affects an outcome you can use reveal_outcome to reveal the outcome; Z and Y are default

1.8.2 Steps: A simple experimental design

N <- 100
b <- .5

design <-
  declare_model(N = N, U = rnorm(N),
                potential_outcomes(Y ~ b * Z + U)) +
  declare_assignment(Z = simple_ra(N), Y = reveal_outcomes(Y ~ Z)) +
  declare_inquiry(ate = mean(Y_Z_1 - Y_Z_0)) +
  declare_estimator(Y ~ Z,
                    inquiry = "ate",
                    .method = lm_robust,
                    label = "estimator 1")

A few new elements here:

  • when you declare an estimator you should normally associate an inquiry with the estimator and provide the method to be used; lm_robust is default
  • you should generally label estimators as you may have many

1.8.3 Steps: Order matters

e.g. If you sample before defining the inquiry you get a different inquiry to if you sample after you define the inquiry

design_1 <- 
  declare_model(N = 1000, X = rep(0:1, N/2), Y = X + rnorm(N)) + 
  declare_sampling(S= strata_rs(strata = X, strata_prob = c(.2, .8))) +
  declare_inquiry(m = mean(Y))

design_1 |> draw_estimands()
  inquiry  estimand
1       m 0.7907839

1.8.4 Steps: Order matters

e.g. If you sample before defining the inquiry you get a different inquiry to if you sample after you define the inquiry

design_2 <- 
  declare_model(N = 1000, X = rep(0:1, N/2), Y = X + rnorm(N)) + 
  declare_inquiry(m = mean(Y)) +
  declare_sampling(S= strata_rs(strata = X, strata_prob = c(.2, .8))) 

design_2 |> draw_estimands()
  inquiry  estimand
1       m 0.5467558

1.8.5 M: Key extensions to model declaration

You can generate hierarchical data like this:

M <- 
  declare_model(
    households = add_level(
      N = 100, 
      N_members = sample(c(1, 2, 3, 4), N, 
                         prob = c(0.2, 0.3, 0.25, 0.25), replace = TRUE)
    ),
    individuals = add_level(
      N = N_members, 
      age = sample(18:90, N, replace = TRUE)
    )
  )

1.8.6 M: Key extensions to model declaration

You can generate hierarchical data like this:

M() |> head() |> kable(digits = 2) |> kable_styling(font_size = 20)
households N_members individuals age
001 1 001 57
002 4 002 34
002 4 003 40
002 4 004 57
002 4 005 31
003 3 006 41

1.8.7 M: Key extensions to model declaration

You can generate panel data like this:

M <- 
  declare_model(
    countries = add_level(
      N = 196, 
      country_shock = rnorm(N)
    ),
    years = add_level(
      N = 100, 
      time_trend = 1:N,
      year_shock = runif(N, 1, 10), 
      nest = FALSE
    ),
    observation = cross_levels(
      by = join_using(countries, years),
      observation_shock = rnorm(N),
      Y = 0.01 * time_trend + country_shock + year_shock + observation_shock 
    )
  )

1.8.8 M: Key extensions to model declaration

You can generate panel data like this:

M() |> head() |> kable(digits = 2) |> kable_styling(font_size = 20)
countries country_shock years time_trend year_shock observation observation_shock Y
001 -1.01 001 1 7.24 00001 0.14 6.38
002 1.59 001 1 7.24 00002 1.10 9.94
003 0.18 001 1 7.24 00003 0.94 8.37
004 -2.07 001 1 7.24 00004 0.21 5.40
005 0.22 001 1 7.24 00005 1.08 8.55
006 -0.37 001 1 7.24 00006 1.22 8.11

1.8.9 M: You can pull in preexisting data

M <- 
  declare_model(
    data = baseline_data,
    attitudes = sample(1:5, N, replace = TRUE)
  )

1.8.10 M: A simple experimental design

You can repeat steps and play with the order, always conscious of the direction of the pipe

design <- 
  declare_model(N = N, X = rep(0:1, N/2)) +
  declare_model(U = rnorm(N), potential_outcomes(Y ~ b * Z * X + U)) + 
  declare_assignment(Z = block_ra(blocks = X), Y = reveal_outcomes(Y ~ Z)) + 
  declare_inquiry(ate = mean(Y_Z_1 - Y_Z_0)) + 
  declare_inquiry(cate = mean(Y_Z_1[X==0] - Y_Z_0[X==0])) + 
  declare_estimator(Y ~ Z, inquiry = "ate", label = "ols") + 
  declare_estimator(Y ~ Z*X, inquiry = "cate", label = "fe")

1.8.11 M: You can generate multiple columns together

M2 <-
  declare_model(
    draw_multivariate(c(X1, X2) ~ MASS::mvrnorm(
      n = 1000,
      mu = c(0, 0),
      Sigma = matrix(c(1, 0.3, 0.3, 1), nrow = 2)
    )))

1.8.12 M: You can generate multiple columns together

M2() |> head() |> kable(digits = 2) |> kable_styling(font_size = 28) 
X1 X2
-1.37 -0.97
1.33 -0.04
-0.56 1.33
0.29 -1.29
0.41 -0.58
-1.22 -1.16

1.8.13 M: Cluster structures with cluster correlations

M <-
  declare_model(households = add_level(N = 1000),
                individuals = add_level(
                  N = 4,
                  X = draw_normal_icc(
                    mean = 0,
                    clusters = households,
                    ICC = 0.65
                  )
                ))

1.8.14 M: Cluster structures with cluster correlations

model <- lm_robust(X ~ households, data = M())
model$adj.r.squared
[1] 0.6709427

1.8.15 I: Inquiries

Many causal inquiries are simple summaries of potential outcomes:

Inquiry Units Code
Average treatment effect in a finite population (PATE) Units in the population mean(Y_D_1 - Y_D_0)
Conditional average treatment effect (CATE) for X = 1 Units for whom X = 1 mean(Y_D_1[X == 1] - Y_D_0[X == 1])
Complier average causal effect (CACE) Complier units mean(Y_D_1[D_Z_1 > D_Z_0] - Y_D_0[D_Z_1 > D_Z_0])
Causal interactions of \(D_1\) and \(D_2\) Units in the population mean((Y_D1_1_D2_1 - Y_D1_0_D2_1) - (Y_D1_1_D2_0 - Y_D1_0_D2_0))

Generating potential outcomes columns gets you far

1.8.16 I: Inquiries

Often though we need to define inquiries as a function of continuous variables. For this generating a potential outcomes function can make life easier. This helps for:

  • Continuous quantities
  • Spillover quantities
  • Complex counterfactuals

1.8.17 I: Inquiries: Complex counterfactuals

Here is an example of using functions to define complex counterfactuals:

f_M <- function(X, UM) 1*(UM < X)
f_Y <- function(X, M, UY) X + M - .4*X*M + UY

design <- 
  declare_model(N = 100,
                X = simple_rs(N),
                UM = runif(N),
                UY = rnorm(N),
                M = f_M(X, UM),
                Y = f_Y(X, M, UY)) +
  declare_inquiry(Q1 = mean(f_Y(1, f_M(0, UM), UY) - f_Y(0, f_M(0, UM), UY)))

design |> draw_estimands() |> kable() |> kable_styling(font_size = 20)
inquiry estimand
Q1 1

1.8.18 I: Inquiries: Complex counterfactuals

Here is an example of using functions to define effects of continuous treatments.

f_Y <- function(X, UY) X - .25*X^2 + UY

design <- 
  declare_model(N = 100,
                X  = rnorm(N),
                UY = rnorm(N),
                Y = f_Y(X, UY)) +
  declare_inquiry(
    Q1 = mean(f_Y(X+1, UY) - f_Y(X, UY)),
    Q2 = mean(f_Y(1, UY) - f_Y(0, UY)),
    Q3 = (lm_robust(Y ~ X)|> tidy())[2,2]
    )

design |> draw_estimands() |> kable() |> kable_styling(font_size = 20)
inquiry estimand
Q1 0.857143
Q2 0.750000
Q3 1.363886

which one is the ATE?

1.8.19 D: Assignment schemes

The randomizr package has a set of functions for different types of block and cluster assignments.

  • Simple random assignment: “Coin flip” or Bernoulli random assignment. All units have the same probability of assignment: simple_ra(N = 100, prob = 0.25)
  • Complete random assignment: Exactly m of N units are assigned to treatment, and all units have the same probability of assignment m/N complete_ra(N = 100, m = 40)

1.8.20 D: Assignment schemes

  • Block random assignment: Complete random assignment within pre-defined blocks. Units within the same block have the same probability of assignment m_b / N_b block_ra(blocks = regions)
  • Cluster random assignment: Whole groups of units are assigned to the same treatment condition. cluster_ra(clusters = households) * Block-and-cluster assignment: Cluster random assignment within blocks of clusters block_and_cluster_ra(blocks = regions, clusters = villages)

1.8.21 D: Assignment schemes

You can combine these in various ways. For examples with saturation random assignment first clusters are assigned to a saturation level, then units within clusters are assigned to treatment conditions according to the saturation level:

saturation = cluster_ra(clusters = villages, conditions = c(0, 0.25, 0.5, 0.75))
block_ra(blocks = villages, prob_unit = saturation)

1.8.22 A: Answers: terms

By default declare_estimates() assumes you are interested in the first term after the constant from the output of an estimation procedure.

But you can say what you are interested in directly using term and you can also associate different terms with different quantities of interest using inquiry.

design <-
  declare_model(
    N = 100,
    X1 = rnorm(N),
    X2 = rnorm(N),
    X3 = rnorm(N),
    Y = X1 - X2 + X3 + rnorm(N)
  ) +
  declare_inquiries(ate_2 = -1, ate_3 = 1) +
  declare_estimator(Y ~ X1 + X2 + X3,
                    term = c("X2", "X3"),
                    inquiry = c("ate_2", "ate_3"))

design  |> run_design()  |> kable(digits = 2) |> kable_styling(font_size = 20)
inquiry estimand term estimator estimate std.error statistic p.value conf.low conf.high df outcome
ate_2 -1 X2 estimator -0.85 0.09 -9.80 0 -1.02 -0.68 96 Y
ate_3 1 X3 estimator 0.99 0.10 9.87 0 0.79 1.18 96 Y

1.8.23 A: Answers: terms

Sometimes it can be confusing what the names of a term is but you can figure this by running the estimation strategy directly. Here’s an example where the names of a term might be confusing.

lm_robust(Y ~ A*B, 
          data = data.frame(A = rep(c("a",  "b"), 3), 
                            B = rep(c("p", "q"), each = 3), 
                            Y = rnorm(6))) |>
  coef() |> kable() |> kable_styling(font_size = 20)
x
(Intercept) 0.984547
Ab -1.172676
Bq -1.976603
Ab:Bq 2.115862

The names are they appear in the output here is the name of the term that declare_estimator will look for.

1.8.24 A: Answers: other packages

DeclareDesign works natively with estimatr but you you can use whatever packages you like. You do have to make sure though that estimatr gets as input a nice tidy dataframe of estimates, and that might require some tidying.

design <- 
  declare_model(N = 1000, U = runif(N), 
                potential_outcomes(Y ~ as.numeric(U < .5 + Z/3))) + 
  declare_assignment(Z = simple_ra(N), Y = reveal_outcomes(Y ~ Z)) + 
  declare_inquiry(ate = mean(Y_Z_1 - Y_Z_0)) + 
  declare_estimator(Y ~ Z, inquiry = "ate", 
                    .method = glm, 
                    family = binomial(link = "probit"))

Note that we passed additional arguments to glm; that’s easy.

It’s not a good design though. Just look at the diagnosis:

1.8.25 A: Answers: other packages

diagnose_design(design)
if(run)
  diagnose_design(design) |> write_rds("saved/probit.rds")

read_rds("saved/probit.rds") |> 
  reshape_diagnosis() |>
  kable() |> 
  kable_styling(font_size = 20)
Design Inquiry Estimator Term N Sims Mean Estimand Mean Estimate Bias SD Estimate RMSE Power Coverage
design ate estimator Z 500 0.33 0.97 0.64 0.09 0.64 1.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Why is it so terrible?

1.8.26 A: Answers: other packages

Because the probit estimate does not target the ATE directly; you need to do more work to get there.

You essentially have to write a function to get the estimates, calculate the quantity of interest and other stats, and turn these into a nice dataframe.

Luckily you can use the margins package with tidy to create a .summary function which you can pass to declare_estimator to do all this for you

tidy_margins <- function(x) 
  broom::tidy(margins::margins(x, data = x$data), conf.int = TRUE)

design <- design +  
  declare_estimator(Y ~ Z, inquiry = "ate", 
                    .method = glm, 
                    family = binomial(link = "probit"),
                    .summary = tidy_margins,
                    label = "margins")

1.8.27 A: Answers: other packages

if(run)
  diagnose_design(design) |> write_rds("saved/probit_2.rds")

read_rds("saved/probit_2.rds") |> reshape_diagnosis() |> kable() |> 
  kable_styling(font_size = 20)
Design Inquiry Estimator Term N Sims Mean Estimand Mean Estimate Bias SD Estimate RMSE Power Coverage
design ate estimator Z 500 0.33 0.97 0.64 0.09 0.64 1.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
design ate margins Z 500 0.33 0.31 -0.02 0.02 0.03 1.00 0.90
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

Much better