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1
Getting Started

1.1 Reading these notes

These notes will be given out in parts to accompany the first seven weeks
of class. The notes do not replace the readings but should help with the
lectures and should summarize some key information in a single place.
The notes will also contain the exercises associated with different parts

of the course, these are marked in the text as “Exercise #” and are associ-
ated with the lectures from a given week. In all cases they are due at the
beginning of class on the following week. There are also problems marked
in the text as “Problem #.” These do not need to be handed in, rather they
are typically simple problems that are worth working through as you read
through the notes. The numbering in the text follows the week numbers in
the syllabus.

1.2 Reading the Readings

1.2.1 Anticipatory reading

The readings for the course are relatively few in number but you are ex-
pected to read them very very closely. The recommended approach might
be what’s called “anticipatory reading.”
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1. First read the first few pages or the conclusion, or skim through
enough to find out what the general problem is.
! Now, before going further, write down a wish list of the types of
propositions / theorems that you would like to see answered in the
article (really write down the form of the propositions as formally as
you can).

2. Read on to see what kind of results are in fact obtained.
! Compare these with your wish list: are the results: Stronger? More
general? Deeper? Surprising? Disappointing?
! Try to satisfy yourself that the results in the text are true: think of
examples and try to think of counterexamples.

3. Write down a proposed strategy of proof.

4. Try to prove the propositions yourself.
! If you fail, try to prove a weaker version of the propositions.

5. After succeeding or failing, compare your attempts with the proofs
in the paper.
! What are the advantages/disadvantages of your approach relative
to the approach given in the paper? What tricks did the author use
that you had not thought of?
! Is the author’s proof simpler? Is it constructive? If the author skips
some step that is not clear to you (“obviously blah blah”, “blah blah
is trivially true,”. . . ) try to prove the step.
! Don’t try to read the proof until you understand exactly what the
author is trying to prove.

1.2.2 Pictures and Programs

Throughout your reading: Draw pictures; Create examples; Search for coun-
terexamples. I strongly recommend using some mathematical program to
graph the various relations (or special cases of the relations) used in the
text, to see what shapes they take, how they relate to other quantities
in the text, what a particular solution looks like, and so on. I use Math-
cad, other possibilities that are good for graphics are Mathematica and
Maple. I find Gauss a lot clunkier.1 R is very good for graphics and you
can learn the basics very quickly. (http://www.r-project.org/). Mathemat-
ical programs can also be used to develop intuition about the nature of
relations by searching through parameter spaces to see when given rela-
tionships do or do not hold. Mathcad and Mathematica are also good for

1To see Mathematica graphics look here : http://gallery.wolfram.com/, for Maple:
http://www.mapleapps.com/categories/graphics/gallery/acgraphicsgallery.shtml and
for Mathcad: http://www.mathcad.com/library/Gallery.asp
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solving problems analytically, in particular they can do calculus and find
symbolic solutions to systems of equations. This year Mathcad has made a
set of licences available, for the course of the term, to students taking this
class; R is available for free. We (Bernd) will give some basic training to get
you started in R and Mathcad during the first couple of weeks of the course
and will assign a some exercises in the problem sets that can be done using
these programs.

1.2.3 Writing

I recommend, if you do not already know how, that you learn to use
Scientific Word (www.mackichan.com) or LaTeX (www.latex-project.org,
www.maths.tcd.ie/~dwilkins/LaTeXPrimer) during the course of the term
and use these tools to write your papers. There’s a bit of a start-up cost
but once you have paid this off you will find that you can write mathemat-
ics much more quickly and also more nicely. Again there will be a short
introduction to writing in LaTeX or SciWord at the start of the course, but
mastering it will be up to you.

1.2.4 Dictionary

Game theory is “notationally challenged.” Even simple results often use
many more signs and symbols than might have seemed necessary. When
reading a text it is always useful to make your own dictionary: keep a
page to one side where you record the meanings assigned to symbols in the
text–pay special attention to the meaning of subscripts, superscripts and
decorations.
It may also be necessary to keep a mathematical dictionary handy. One

very good on-line resource is http://mathworld.wolfram.com.
Also try http://www.gametheory.net/Dictionary/

1.3 Sources and Resources

1.3.1 Books on the Syllabus

• * Osborne, Martin, and Ariel Rubinstein. 1994. A Course in Game
Theory. Cambridge: MIT UP. Also available on-line:
http://www.netlibrary.com/ebook_info.asp?product_id=11376

• * Velleman, Daniel. 1994. How to Prove It: A Structured Approach.
Cambridge: Cambridge University Press.
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• Muthoo, Abhinay. 1999. Bargaining Theory with Applications. Cam-
bridge: Cambridge University Press. Chapter 3. On reserve at the
BUSINESS library.

• Rasmusen, Eric. 2001. Readings in Games and Information. Lon-
don: Blackwell. See BUSINESS: QA269 .R42 2001. On reserve at
the BUSINESS library.

• Mas-Colell, Andreu, Michael Whinston, and Jerry Green. 1995. Mi-
croeconomic Theory. Oxford: Oxford University Press. See BUSI-
NESS: HB172 .M6247 1995.

1.3.2 Recommended Books Not on the Syllabus

• Polya, G. 1945, How to Solve It: A New Aspect of Mathematical
Method. Princeton: Princeton University Press. (a useful and fairly
enjoyable read)

• Myerson, Roger. 1991. Game Theory: Analysis of Conflict. Cam-
bridge: Harvard University Press (an excellent textbook)

• Sundaram, Rangarajan. 1996. A First Course in Optimization The-
ory. Cambridge: Cambridge University Press. (good for technical ex-
planations)

• Kreps, David. 1990. A Course in Microeconomic Theory, Princeton:
Princeton University Press. (broad textbook written in an informal
style that some love and some don’t)

1.3.3 Recommended On-Line Resources

• Al Roth’s page http://www.economics.harvard.edu/~aroth/alroth.html

• David Levine’s page http://levine.sscnet.ucla.edu/

• Eric Rasmusen’s page: http://php.indiana.edu/~erasmuse/GI/index.html

• e-Journals http://www.columbia.edu/cu/lweb/eresources/ejournals/

• Software for writing up game trees:
http://www.cmu.edu/comlabgames/efg/index.html

• WoPEc etc.: http://netec.wustl.edu/WoPEc/
http://econwpa.wustl.edu/months/game
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1.4 Notation Refresher

1.4.1 Logic Symbols

∀ For all
∃ There exists...
∃! There exists a unique...
¬ Not
∼ Not
! Not
∨ Or
∧ And
| Such that, given that
: Such that, given that
× The Cartesian product / Cross product: e.g. the set

A×B is the set of all pairs ha, bi in which a ∈ A and b ∈ B.

1.4.2 Necessary and Sufficient Conditions

There are multiple ways of stating that some statement imples or is im-
plied by another statement. Most commonly such statements are referred
to as necessary and sufficient conditions. Here is listing of the equivalent
statements that are used for these conditions.

Necessity:The following statements are equivalent.
X is a necessary condition for Y
Y is a sufficient condition for X
X is implied by Y
Only if X then Y (or: Y only if X)
X ← Y (or: X ⇐ Y )
Example (i does not shower):
Only if it rains (X) does i get wet (Y )

Sufficiency: The following statements are equivalent.
X is a sufficient condition for Y
Y is a necessary condition for X
X implies Y
If X then Y (or: Y if X)
X → Y (or: X ⇒ Y )
Example (i has no umbrella):
If it rains (X) then i gets wet (Y )
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Necessity and Sufficiency: The following statements are equivalent.
X is a necessary and sufficient condition for Y
Y is a necessary and sufficient condition for X
X implies and is implied by Y
X iff Y (or:Y iff X or: X if and only if Y )
X ↔ Y (or: X ⇔ Y )
Example: i does not shower and has no umberella:
i gets wet (Y ) if and only if it rains (X)

1.4.3 Set Operations

\ (e.g. A\B) The residual of set A after B is removed; A\B = A−B.
∈ Element of
⊆, ⊂ Strict Subset, Subset of
∪ Union
∩ Intersection
0 (e.g. A0) The Complement of A
c (e.g. Ac) The Complement of A
® The null or empty set

1.4.4 Some (fairly standard) symbols for particular sets

N the set of all agents, typically labelled such that N = {1, 2, ...n}
Ai the set of actions available to agent i ∈ N , with typical element ai
Σi the set of mixed strategies available to agent i ∈ N , with typical element σi
X the set of possible outcomes, with typical element x, y, or z

1.4.5 Convexity and Concavity

Note that the term convex is used differently when applied to sets and
functions.

• A “convex combination” of a set of points in a weighted average of
those points, for example : c = λa+(1−λ)b is a convex combination
of a and b for all λ ∈ [0, 1].

• A set is “convex” if it has no indents. More formally, if a set is convex
then all convex combinations of points in the set are also in the set
(any points lying on a line between two points in the set are also in
the set). Hence, for example, an orange is convex but a banana is not.
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• The “convex hull” of a set is the smallest convex set that contains
the set. Its what you’d get if you wrapped a blanket tightly around
the set.

• A function is “convex” if the line joining any two points of the graph
of the function lies above the graph of the function (note that if the
set of points above the graph of a function form a convex set then the
function is convex). Formally, f is convex if for all a, b in the domain
of f and for all λ ∈ (0, 1), λf(a) + (1− λ)f(b) ≥ f(λa+ (1− λ)b).

• A correspondence f is “convex valued” if for any point x in the
domain of f , f(x) is convex.

• A function is “concave” if the line joining any two points of the graph
of the function lies below the graph of the function (note that if the
set of points below the graph of a function is convex then the function
is concave). Formally, f is concave if for all a, b in the domain of f
and for all λ ∈ (0, 1), λf(a) + (1− λ)f(b) ≤ f(λa+ (1− λ)b).

• A function f is “quasiconcave” if for any point, x, in the domain of
f , the set of points {y : f(y) ≥ f(x)} is convex.

1.4.6 Preference Relations %, R
• An agent’s “preference relation” % or R is a binary relation over
a set of alternatives; that is, it tells us something about how two
alternatives relate to each other, specifically...

• x %i y, xRiy mean “x is weakly preferred to y by i.”

• x Âi y, xPiy mean “x is strictly preferred to y by i.”

• x ∼i y, xIiy mean “i is indifferent between x and y.”

• These operators can be strung together: e.g. x Âi y %i z.

• A preference relation is “transitive” if for any triple (x, y, z), x < y
and y < z imply x < z.

• A preference relation is “complete” if and only if for all pairs (x, y)
either x < y or y < x or both.

• A preference relation is “rational” if it is complete and transitive.
(Note that rationality here then simply means that people have well
defined preferences at a given point in time over a set of options, it
does not say anything about whether people are selfish, or even that
people are in any way clever. )
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• We can sometimes represent a preference relation %i or Ri as a col-
umn of elements in X, with the player’s label as column header and
the elements ordered from most preferred on top to least preferred at
the bottom. For example:

i
aPibPic   ⇔  a

 b
 c
 

FIGURE 1.1. Player i’s ordering over {a, b, c}.

• The subscript on % or R tells us whose preference relation we are
talking about. The subscript may refer to an individual or the group.
Conventionally, society’s preference relation is represented without
any subscript.

• A “profile”of preference relations {Ri}, (%i) is an n-tuple (an or-
dered set with n elements) of preference relations, e.g. (%i)i∈N = (%1
,%2, ...,%n).
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2
General Approaches to the Problem
of Group Action

This week we will review some big results from the formal study of political
and economic interactions: (i) Kenneth Arrow’s Impossibility theorem, a
rigorous study with very wide application, both political and philosophical
that has produced an enormous literature. For problems of collective deci-
sion making, this result suggests that with freedom of opinion no prediction
is possible. We then turn to examine a result attributed to Ronald Coase
(ii) that suggests that with freedom of trade not only are precise predic-
tions possible but that those predictions correspond to “good” outcomes.
Finally we consider how the problem is treated in standard models in the
non-cooperative game theoretic tradition (iii). These suggest that for some
such problems, with freedom of action, precise predictions may be possible
but they do not necessarily produce good outcomes. We close with a dis-
cussion of Amartya Sen’s result on the impossibility of a Paretian liberal,
which is technically simple but highlights well the tensions between these
different approaches.

2.1 No Predictions Possible?: Arrow’s Theorem

Political scientists (and almost everyone else) like to make statements of the
form “the US wants to get rid of Saddam Hussein.” Such statements assume
the existence of some method for making claims about the preferences or
interests of a collectivity, based, presumably, on the preferences or interests
of all the individuals of the collectivity or some subset of them. In order to
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interpret such statements properly, we need to know what this method is
and what its properties are. We might not require this method, whatever
it is, to be based on the complete consensus of the relevant group, we
may be happy for example interpreting the statement to read “a majority
of Americans want to. . . ” But we do need to have some sort of method
simply in order to know what such statements mean. Arrow’s theorem is
about working out what such a method might be. The result of his enquiry
is his impossibility theorem.
Arrow’s Impossibility Theorem is impossible to state elegantly. In short

it says that there is no way aggregate individual preferences into a rational
social preference without violating some basic normative principles. But
much hinges on what those normative principles are. We provide a formal
statement of the theorem–and of the normative principles–next.

2.1.1 SWF, Axioms and Statement of the Theorem

First of all we need to specify what we mean by an aggregation rule. We
use the idea of a social welfare function.

Definition 1 A “Social Welfare Function” (SWF), is a preference
aggregation rule, f , that maps from the set of individual preference profiles
over a set of options, X (with typical element (%i)i∈N) to the set of rational
(“social”) preferences over X (with typical element %).

Note that the requirement that the social preferences be rational implies
that the SWF produces a transitive social ordering, and that it uses only
information from ordinal non-comparable utility functions. For any group
of individuals there may of course be any number of SWFs, we could for
example arbitrarily choose one person and invert his ordering and call this
ordering the “social” preference ordering. (This particular function does not
correspond to any mechanisms actually used by any polities. But it does
produce a rational ordering!) Intuitively that kind of method probably does
not capture what we have in mind when we make statements of the form
“Group Z prefers x to y.” The reason is that we probably have a number
of unstated normative assumptions in mind. One of those is probably that
the rule be positively, rather than negatively, responsive to the preferences
of the citizens. Arrow tries to bring these normative assumptions out into
the open and, in particular, identifies the following four axioms that appear
unremarkable. They are:

Definition 2 (N) f is a “Non-Dictatorial” function. That is, the so-
cial ordering does not (invariably) reflect the ordering of just one person’s
preferences. Formally we simply require that there exists no person, i, such
that ∀x, y : {x Âi y, y Âj x∀j 6= i} −→ x Â y.
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Definition 3 (P) f is “Weakly Pareto Efficient.” That is, ∀x, y : {x Âi
y∀i} −→ x Â y: hence, if everyone prefers x to y then x should be consid-
ered socially preferred to y.

Definition 4 (U) f has an “Unrestricted Domain.” We do not ex ante
prohibit people from having particular preferences: individuals should be able
rank alternatives in any possible strict ordering.

Definition 5 (IIA) f satisfies pair-wise “Independence of Irrelevant
Alternatives.” The social ordering of x and y does not depend on the
ranking of any other alternative, z, in the preference profile of any individ-
ual: %|{x,y} = fx,y((%i|{x,y})i∈N ).

We can think of Arrow’s exercise as one of narrowing down the class of
possible social functions to see which ones satisfy these four conditions. His
surprising result is that no social welfare function satisfies these conditions.
The four conditions together imply intransitivity. Alternatively, transitiv-
ity plus any three of these conditions implies a violation of the fourth. A
common way of proving the result is to show that together P, U, and IIA
imply a violation of N. This is the approach that I follow next; the proof is
based primarily on the very clear exposition by Mueller (1989) with minor
modifications. Similar proofs can be found in Ordeshook (1986), Vickery
(1960) and Shubik (1987).
The proof makes use of the idea of a decisive set, this is defined as follows:

Definition 6 D is “decisive” over (x, y) if x Âi y∀i ∈ D and y Âi x∀i /∈
D imply x Â y.

Note that a decisive set always exists since the Pareto principle implies
that the group as a whole is a decisive set.
The proof then proceeds in two stages. The first shows that if any group

is decisive over one pair of alternatives then it is decisive over all pairs
of alternatives. The second shows that if any group is decisive, then one
individual is decisive. Together these imply that the existence of any group
that is decisive implies the existence of a dictator.
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2.1.2 Formal Statement and Proof

Theorem 7 (Arrow) Any SWF that satisfies P, U, and IIA violates N.
Proof. The proof follows in two stages:
Stage 1: To show that if a group is decisive over one pair, it is decisive

over all pairs.

1. Let D be decisive over x and y.We aim to show that D is also decisive
over any other pair z and w.
[The existence of some such D follows from the Pareto principle]

2. Assume x Âi y Âi z for all i ∈ D and z Âj x Âj y for all j /∈ D
[Unrestricted domain lets us assume any orderings we like!]

3. Then from P: x Â y
But since D is decisive we have y Â z
So from transitivity: x Â z

4. Considering only relative rankings over x and z we have x Âi z for
all i ∈ D and z Âj x for all j /∈ D implies x Â z. Hence D decisive
over x and y implies that D is decisive over z and x.

5. By repeating steps 1-4 we can establish that D decisive over z and x
implies that D is decisive over z and w.

Stage 2: We next aim to show that if D contains more than one player
and is decisive over all pairs, then a strict subset of D is decisive over all
pairs.

1. Assume D has more than one individual and partition D into non-
empty groups D1 and D2.

2. Assume x Âi y Âi z for all i ∈ D1 and z Âj x Âj y for all j ∈ D2;
for all other players assume y Âk z Âk x
[Note, we again use unrestricted domain]

3. Since D is decisive and x Âi y for all i ∈ D we have x Â y

4. Now, either z Â y or y % z.
If z Â y then D2 is decisive.
But if y % z then (since x Â y) we have x Â z and so D1 is decisive.
Either way one subset is decisive over this pair (and hence over all
pairs)

5. By repeating steps 1-4 we establish that if D is decisive then one
player is decisive over all pairs and hence a dictator exists.
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2.1.3 Examples of SWFs and Consequences of Axiom
Violation

We have then that these four properties can not all be simultaneously
satisfied for a SWF. However it is also the case that all of these properties
are necessary to get the impossibility result; a SWF can be found that
satisfies any three of the four properties. We demonstrate this by example
next.

• A Dictatorship violates N but satisfies all the other axioms.

• A host of SWFs violate P but satisfy IIA, N and U. They tend however
to have an arbitrary aspect to them. The “inverse dictator” mentioned
above was one such example.

• The Borda count violates IIA but satisfies all other axioms. Violating
IIA may seem unimportant–it certainly doesn’t have the same moral
weight as violating U, P or N. It leads however to many uncomfort-
able paradoxes. Here I illustrate one that may arise, the “inverted
order paradox”.

Consider a population of three types that are demographically dis-
tributed with preferences as in Figure ??. Assume now that we use
the Borda count to create a social ordering. The Borda count takes
each person’s ranking, gives a “0” score to the lowest rank, a “1” to
the second lowest and so on up to the highest. It then adds up the
scores received by all options, compares these scores and creates a
global ranking, violating IIA along the way.

Type I II III
Weight (3) (2) (2) 
 x a b 
 c x a 
 b c x 
 a b c 

 Inverted Order Paradox

• If preferences are constrained to be “single peaked” then majority rule
is transitive and satisfies all the axioms except U. The restriction, is
extremely strong and unlikely to hold in practice. With unrestricted
domain satisfied however majority rule produces intransitive order-
ings, the classic case being the Condorcet Paradox.

Problem 8 Use this information to check that the ordering of the ranking
of a, b and c is inverted with the removal or addition of option x.

Problem 9 Arguably Arrow’s result is driven by the poverty of the in-
formation he uses. What if the function used as inputs not the individual’s
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ordering over options but the individuals ordering over orderings of options,
this should provide much richer information. Would it resolve the problem?
To answer this, you can use a related result to Arrow’s that shows that it is
also not possible to find a function satisfying the axioms that takes a profile
of preference relations into a single best option (a social choice) rather than
into a preference relation (a social ordering).

2.2 Freedom to Trade and Precise and Pleasant
Predictions

Whereas Arrow’s theorem is often used to highlight the arbitrary nature of
political processes, the Coase theorem is often used to argue that political
processes are not “needed” at all. The Coase theorem, though rarely stated
formally, appears to imply that markets can reach optimality even in cases
where people tend to think states are needed. The field of application is
wide (“That follows from the Coase Theorem!” is listed by Stigler as one
of the top 30 comments at economics conferences). It has been influential
in forming development policies and is often invoked for evaluating social
policies. Informally, the theorem states that in the absence of “transactions
costs” and assuming that property rights are fully assigned, the ability to
trade will produce the same Pareto optimal1 level of public goods produc-
tion (or negative externality production) no matter how those property
rights are allocated. [In weaker versions of the theorem the “the same”
clause is dropped]
To see the logic of the strong version of the theorem, consider the fol-

lowing simple “quasilinear” environment in which each player i ∈ N =
{1, 2, ...n} can take actions ai ∈ Ai where Ai is a non-empty compact and
convex subset of Rn for each i.
Assume that individuals can engage in trade in which they can make

monetary transfers, tji, to each other (where tji is the net transfer from
j to i and so tji = −tij) in exchange for commitments to take particular
actions (ai). Let t denote a vector containing all such transfers. Assume
finally that individuals have no budget constraints.
Let the utility of each i ∈ N be given by her independent evaluation of

the good ui(a) (where a is the vector of all choices made by all individuals
and ui : ×i∈NAi → R1 is continuous and strictly concave), plus her money
income,

P
j∈N

tji. Hence we write vi(a, t) = ui(a)+
P
j∈N

tji. (Note: This is the

quasilinear part–players have linear preferences in income.)
An “outcome” in this game is a pair (a, t).

1An outcome, x, is “Pareto Optimal” if there exists no other outcome that all players
like at least as much as x and that at least one player strictly prefers to x.
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Now we state and prove the following:

Claim 10 (i) There is a unique solution, call it a∗, to the problem of max-
imizing f(a) =

P
i∈N

ui(a). (ii) Furthermore, outcome (a0, t0) is (Pareto)

efficient if and only if a0 = a∗.

Proof. (i) (Existence) With Ai compact and non-empty for all i,×i∈NAi
is compact; with ui(a) continuous for all i,

P
i∈N

ui(a) is continuous, hence,

from the Weierstrass theorem the function f : ×i∈NAi → R1 attains a
maximum. (Uniqueness) With each ui(a) strictly concave, we have that
f(a) is also strictly concave and hence achieves a unique maximum.
(ii.1 ) (First we do the if part using a Direct Proof) Assume that a∗

maximizes f(a). But then a∗ maximizes
P
i∈N

ui(a) =
P
i∈N

(ui(a)+
P
j∈N

tji) =P
i∈N

vi(a). But this implies that (a∗, t∗) achieves the utilitarian optimum

and therefore that it is Pareto efficient.2

(ii.2 ) (Next we do the only if part and use a Proof by Contradiction)
Assume that (a0, t0) is Pareto efficient but that a0 does not maximize f(a).
Consider now the rival outcome in which a∗ is implemented and transfers,
t∗ are made that differ from t0 only in that: t∗i1 = ui(a

∗)− ui(a0) + t0i1 for
all i ∈ N .3
The net gain to player i 6= 1 is then:

∆i = ui(a
∗)− ui(a0) + t∗1i − t01i

= ui(a
∗)− ui(a0)− t∗i1 + t0i1

= ui(a
∗)− ui(a0)− ui(a∗) + ui(a0)− t0i1 + t0i1

= 0

Hence, each player other than Player 1 is indifferent between (a0, t0) and
(a∗, t∗).

2Why is the utiltarian optimum necessarily Pareto efficient. Write out a short proof.
3The interpretation here is that each player hands her “bonus”, ui(a∗)− ui(a0) that

she gains from the implementation of a∗, over to Player 1, along with whatever transfer,
t0i1, was previouly being made.
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Player 1’s net gain is given by:

∆1 = u1(a
∗)− u1(a0) +

X
i∈N\1

(t∗i1 − t0i1)

= u1(a
∗)− u1(a0) +

X
i∈N\1

(ui(a
∗)− ui(a0) + t0i1 − t0i1)

= u1(a
∗)− u1(a0) +

X
i∈N\1

(ui(a
∗)− ui(a0))

=
X
i∈N

ui(a
∗)−

X
i∈N

ui(a
0)

But from the fact that a∗ solves max
a

P
i∈N

ui(a) but a0 does not, we have

that
P

i∈N ui(a
∗) >

P
i∈N ui(a

0) and hence ∆1 > 0. Hence (a0, t0) cannot
be Pareto efficient, a contradiction.

Exercise 11 (Coase Theorem) The claim was stated and proved for cases
where players have “quasilinear preferences.” Does it hold when they do
not? Consider for example a case in which the utility of a is different
depending on whether a player is rich or poor and given by vi(a, t) =
ui(a)×

P
j∈N

tji. Does part (ii) of the claim hold? [Optional: Can you identify

classes of utility functions where part (ii) does or does not hold?]

Remark 12 A very similar proof can be used to show the same result for
weak Pareto optimality (Property [P ] above).

If we are willing to believe that bargaining will always lead to an effi-
cient outcome, and we buy into the other assumptions on the individuals’
preferences, then the theorem implies that bargaining will always lead to
the same public goods outcome (a∗).
This result has been used to argue that it doesn’t matter who is in

government as long as people can trade. And it doesn’t matter whether the
decision to look for work is taken by a woman or by her husband...

2.3 Freedom of Action and Precise but Pessimistic
Predictions

Now consider an illustration of how the problem we have just examined is
handled in a non-cooperative framework. A criticism of the result we saw
above is that we did not specify how trade was conducted. By ignoring the
question we fail to provide an explanation for how optimality is achieved.
Consider the same problem as described above: each player i ∈ N can

take actions ai ∈ Ai; individuals can make monetary transfers, tji, to each
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other; i’s utility is given by vi(a, t) = ui(a) +
P
j∈N

tji. In this case however

players cannot write “contracts,” rather they can make informal agreements
but once it comes to taking their actions, each player chooses ai plus a
vector of transfers simultaneously. Given this problem we look for a Nash
equilibrium in which no player wishes to change her actions, given the set
of actions by all other players.
With this structure of no trades and simultaneous action it is clear that

any Nash equilibrium must involve no transfers from or to any player.
We focus then on the “policy” actions employed by the players. Ignoring
transfers, each player i chooses ai to maximize ui(a1, a2, ..., ai, ..., an). First
order conditions are given by ∂ui(a1,a2,...,ai,...,an)

∂ai
= 0. At the equilibrium

such conditions must hold for all players, and so, (placing a “∗” on the
player’s strategies to denote Nash equilibrium strategies) a set of conditions
of the following form must be satisfied at the equilibrium:⎡⎢⎢⎢⎢⎣

∂u1(a
∗)

∂a1
∂u2(a

∗)
∂a2
...

∂un(a
∗)

∂an

⎤⎥⎥⎥⎥⎦ = 0
Say such an equilibrium exists, can we say anything about its properties?

In many cases we can. For example, assume that for any two players, i and
j, ∂ui(a

∗)
∂aj

6= 0. This implies that the strategy that j chooses to maximize
his own welfare does not happen to be the strategy that is also best for him
to have chosen from i’s perspective. In this case although j cares little for a
small change at this point, such a small change in j’s actions is measurably
good (or perhaps, bad), for i. In this case a trade is possible that improves
the welfare of both i and j, but it is not being realized under the Nash
equilibrium.
Clearly if, furthermore, it is the case for all i 6= j, ∂ui(a

∗)
∂aj

is positive
(or negative), then an increase (or reduction) in j’s actions will be Pareto
improving, subject to some small compensation for j.

Example 13 Let N = {1, 2, ...n}, n > 2, and for i ∈ N let Ai = R1 and
ui(ai|a−i) = (

P
j∈N aj)

2 − 2(ai + 1)2.4
The Nash equilibrium for this game is found by maximizing ui(ai|a∗−i)

for each individual, conditional upon the actions of each other individual

4This is a system in which all players benefit enormously from extra contributions
from all other players but each player pays a private cost for contributing. In this system
the utilitarian objective function,

P
i∈N ui(ai|a−i), is convex in each ai and unless

bounds are put on the actions people can take there is no limit to how large a contribution
is socially desirable.
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being themselves best responses (hence the “∗” in a∗−i). Taking first order
conditions for player i we have that a∗i must satisfy:

∂ui(ai|a∗−i)
∂ai

= 2(
X
j∈N

a∗j )− 4(a∗i + 1) = 0

or: X
j∈N

a∗j − 2a∗i − 2 = 0 (2.1)

(check the second order conditions!). We have one of first order condi-
tion like this for each individual. At a Nash equilibrium they must all hold.
To solve for them then we simply have to solve a system of n linear equa-
tions. With n undetermined that might not be easy, but there are typically
shortcuts for such problems.
Here is one shortcut: If each condition holds, then the sum of the condi-

tions also holds. Hence:

X
i∈N

(
X
j∈N

a∗j − 2a∗i − 2) =
X
i∈N

0

and hence X
j∈N

a∗j =
2n

n− 2

Using Equation 2.15 we can then have that the Nash equilibrium is given
by

a∗i =
2

n− 2 for all i.

We have then identified a Nash equilibrium and we are ready to start
analyzing it. Key points to note in this case as part of your analysis are that
n > 2, ai is decreasing rapidly and that, the total contributions,

P
j∈N a

∗
j

are also decreasing, approaching a limit of
P

j∈N a
∗
j = 2 as n→∞.

Exercise 14 Given this example, use R or Mathcad (or another program),
(i) to graph a given players’ utility function over R1 (that is, over one
dimension), (ii) to graph an individual’s equilibrium action as a function
of n, (iii) to graph the total equilibrium contributions as a function of n.

5A second shortcut that can work for this problem, is to assume that the equilibrium
is symmetric. In this case using Equation 2.1 and substituing ai for each aj we have
na∗i −2a∗i −2 = 0↔ a∗i =

2
n−1 . If you use this approach you should then substitute these

values into the a∗−i vector and confirm that indeed a∗i is a best response to a
∗
−i, thereby

confirming (rather than assuming) that there is in fact a symmetric Nash equilibrium.
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2.4 Sen: On the Impossibility of a Paretian Liberal

The very different results we have seen follow from different approaches to
modelling the world, different assumptions about what can be known about
preferences and different assumptions about how groups make collective
decisions. Although the differences arise from modelling choices there is
also a philosophical tension between the positive Paretian result in our
discussion of Coase and the adverse results found when we employ Nash’s
theorem. This tension is made explicit in a result due to Amartya Sen that
is known as The Impossibility of a Paretian Liberal. It demonstrates the
impossibility of creating any mechanism that produces a transitive ordering
that guarantees both a minimal set of rights and Pareto optimality.
Traditionally the result is generated by looking at a two person setting

where the two players, A and B are each allowed to be decisive over some
outcome pair in X. This is seen as a way of modeling liberal “rights”: if for
example, A has the right to read a book then A is decisive over the pair {
A reads a book, A does not read a book}.
Sen’s story goes like this: two agents, Lewd and Prude are deciding

whether to read Lady Chatterley’s Lover. Lewd thinks that LC’s Lover
is a terrific book and would love to read it. He would get an enormous kick
however out of Prude reading it. And he would simply hate the idea of
nobody reading it. In contrast, Prude thinks that LC’s Lover is a terrible
rag and would like nobody to read it. If someone were to read it however,
he would rather that it be he and not Lewd since Lewd might actually
enjoy it. Their somewhat unusual preferences then are given by:

Lewd Prude 
1. Prude reads (p) 1. Nobody reads (n) 
2. Lewd reads (l) 2. Prude reads (p) 
3. Nobody reads (n) 3. Lewd reads (l) 

 
FIGURE 2.1. Prude and Lewd

Lewd is assumed to be decisive over (l, n) and over this pair he would
choose l; Prude is decisive over (p,n) and he chooses n. The two sets of
rights then give us the liberal social ordering l Â n Â p. By transitivity
the liberal social ordering yields l Â p. Clearly however for both agents
p Â l. If we required Pareto optimality we would then have the cycle
l Â n Â p Â l Â n. . . Visually the cycle involves Lewd picking up the copy
of Lady Chatterley’s Lover, handing it to Prude, Prude putting it down on
the table, Lewd lifting it up again and so on.

Problem 15 Does the Coase theorem provide a solution to Arrow’s prob-
lem? Does it contradict Sen’s result?
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2.5 Note on readings for next week

There’s a relatively heavy reading load for next week but little by way
of problem sets. First–do read through the pieces assigned for this week;
the Coase and Hardin are both easy reads but open up lots of interesting
avenues; the Geanakopolis is more difficult and of lower priority but is a
very elegant example of rigorous formal writing. From next week’s class on
we will turn to looking systematically at strategies for proving propositions.
Read Velleman carefully! Preempt him and try to solve his examples before
he does. When you’re finished test yourself using the tables on page 305-
306: on a blank piece of paper, write out each goal listed in 1-9 in the table,
close the book and try to write down the strategy of proof. Maybe do this
before you try to do the exercises from this week’s notes. The short “How
to Write Mathematics” piece is very useful and a fairly enjoyable read.
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3
How to Prove it I: Strategies of Proof

The notes in this section go over some of the material in Velleman only very
briefly and certainly do not substitute for the Velleman readings. Addi-
tional material in the notes includes a small library of useful theorems that
help in proving the existence and uniqueness of different kinds of points.
We then consider applications of some of the results and in particular walk
through a proof for Nash’s theorem on the existence of an equilibrium. We
end with a discussion of the use of w.l.o.g. in proof writing.

3.1 By Example / by Counterexample

The easiest proofs are by example. In proof writing, examples can serve
three related functions. First they can establish the possibility of an out-
come. For example the claim that for some class of games “Individual
maximization may produce Pareto inferior outcomes” can be proved by
an example. Relatedly, positive claims can be disproved with examples:
find a single counterexample to a theorem and you know that the theorem
is wrong. In fact it is very important to be able to falsify a proposition
by counterexample. The reason is this: before you prove a proposition, you
want to be pretty sure that it is true. You can lose a lot of time trying
to prove things that turn out to be false. A thorough (failed) search for
counterexamples will help you to focus only on propositions that are true
and hopefully save a lot of time. Third, counterexamples can be used as
the basis for a proof by contradiction, as described below.
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Sometimes finding counterexamples can be tricky. Here are two approaches.
The first, is based on the principle of unconditional love towards coun-

terexamples: to be accepted, a counterexample does not have to be plau-
sible, it only has to exist. If you falsify a proposition with an implausible
counterexample, it’s falsified and you are done (the proposition may then
have to modified to deal with implausible cases, but very likely you may
find that the implausible case leads you down to consider more plausible
cases). So one approach is to think imaginatively through unlikely cases
that have the features that the proposition says shouldn’t exist; do not
stick to thinking about likely cases. For example: Claim (to be falsified)
“Consider a set of allocations of $1 between person 1 and person 2. and
assume that no player gets negative utility from any outcome. Then, if
some allocation maximizes the product of all players’ utilities it also max-
imizes the sum of all players’ utilities.” This sounds reasonable, after all,
maximizing the product is the same as maximizing the sum of the logs,
and you might think (wrongly) that if utility functions are unique up to a
monotone transformation, these two maximization problems should be the
same. So let’s find a counterexample. In fact let’s see if we can find a case
where the product of the utilities is always low, but the sum of utilities can
be high. We can keep the product low by ensuring that at least one player
gets 0 utility for all outcomes. Here are somewhat unusual utility functions
that might do the trick. Let’s say that each person’s utility is equal to their
allocation whenever they get strictly more than the other person, but that
their utility is 0 if they get the same or less than the other person. Then
it’s easy to see that the product of the players’ utilities is always 0. But
the sum if the utilities can be as high as 100 if either player is given the
whole $1. So we know the proposition is wrong. What part of it is wrong?
You can get some hint of the answer if you plot out the utility possibility
set for the counterexample we just constructed.

Exercise 16 Plot out the utility possibility set for the problem we just
constructed (that is, the set of all realizable payoff vectors (pairs, in this
case)). Is it symmetric? Is it convex?

Exercise 17 Perhaps the problem is convexity. Consider the following can-
didate proposition: “Consider a set of lotteries of allocations of a $1 between
person 1 and person 2. (In this case one lottery might be of the form ‘with
a 50% probability we give 80 cents to player 1 and 20 cents to player 2
and with a 50% probability we give 20 cents to player 1 and 80 cents to
player 2.’) Then, if some allocation maximizes the product of all players’
utilities it also maximizes the sum of all players’ utilities.” Is this true? If
not, prove it. (Hint: it’s not true)

The second approach is to use a computer to locate a counterexample. In
situations where the parameters of the problem are very well defined you
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can use mathematical software to search for a counterexample. Consider
for example the following claim: “Assume Players 1 and 2 have utility
functions given by ui(xi) = xαi ,α ∈ [0, 2] and that all allocations are such
that xi = 1− xj and xi ≥ 0 and xj ≥ 0 for i 6= j. Then if some allocation
maximizes the product of all player’s utilities it also maximizes the sum
of all players’ utilities.” This problem is quite easy to get a handle on.
You can solve it analytically. But, since the method is important for more
complex problems, let’s think about how to set it up so that a computer
can solve it. The question ‘Is there a counterexample?’ can be written as
an existence question of the form: is there an α such that there exists an
xi that maximizes (xαi × (1−xi)α) but does not maximize (xαi +(1−xi)α).
The approach you will use then is to search through the space of utility
functions–which in this case is the same as examining all values of α
in the range [0, 2]—and for each acceptable value in the parameter space,
find maximizers of (xαi × (1 − xi)α) and (xαi + (1 − xi)α), and see if the
maximizers of (xαi × (1− xi)α) are as good at maximizing (xαi +(1− xi)α)
as the maximizers of (xαi + (1− xi)α) are. The answer to the question will
be yes or no for each α, if you get a no, then the proposition is false; if
you then plot the yes’s and no’s as a function of α then you may get more
insights into the conditions under which the proposition is true.

Exercise 18 Try it.

3.2 Direct Proof

To establish that A→ B using a direct proof we assume that A is true and
deduce B.

Example 19 To prove: For x, y ∈ R1, x2 + y2 ≥ 2xy.
Proof: (x− y)2 ≥ 0→ x2 + y2 − 2xy ≥ 0→ x2 + y2 ≥ 2xy.

The last example is a classic direct proof. It proceeds by showing how
one true implication implies another true implication, implies another true
implication, until you imply your proposition. Oftentimes the chain of rea-
soning is not easy to see. The following is one method that can often help
to identify the chain (although there are dangers involved in this!): work
backwards. In practice you can often show that your proposition implies
something that you know to be true. If you can do this–and if each im-
plication “→ ” in the chain of reasoning you identify can also be reversed
to produce an “←” statement–then you can turn the result around and
state the reversed chain as a direct proof. The proof above for example was
actually constructed by noticing that x2 + y2 ≥ 2xy → x2 + y2 − 2xy ≥
0 → (x − y)2 ≥ 0. The last of these claims we know to be true. This
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gave a chain. But before we have a proof we also have to ensure that
the chain of reasoning works in the opposite direction too, that is that
x2+ y2 ≥ 2xy ↔ x2+ y2− 2xy ≥ 0↔ (x− y)2 ≥ 0. If the reasoning works
in both directions, as it does in this case, we are done and we simply have
to turn our construction around when we write up the proof. This method
can be dangerous if you are not careful about checking that each step holds
in both directions.1

FIGURE 3.1. A direct proof; from Gerber and Ortuno-Ortin 1998

Exercise 20 Prove that the square of an even integer is even.2

In many cases, direct proofs involve writing down the properties that
we expect some object to have and demonstrating that those properties
obtain. For example, often we may want to show that a set, S, is convex.
This can be established using a direct proof by choosing two arbitrary
elements of S, say a and b and deducing from the properties of S that any
point c = λa+ (1− λ)b is an element of S for λ ∈ (0, 1).

Exercise 21 The set Y = {y ∈ Rn :
Pn
i=1 ln(yi) ≥

Pn
i=1 ln(y

0
i )} is convex

for any y0 ∈ Rn. Prove this statement for the case where n = 2.
[Hint] To get you started: you need to choose two elements of Y , y1 and

y2 (each with:
P2
i=1 ln(y

1
i ) ≥

P2
i=1 ln(y

0
i ) and

P2
i=1 ln(y

2
i ) ≥

P2
i=1 ln(y

0
i ))

and show that for λ ∈ (0, 1):
P2
i=1 ln(λy

1
i +(1−λ)y2i ) ≥

P2
i=1 ln(y

0
i ). [Note]

This is a result that we will use when we turn to study Nash’s bargaining
solution.

In some instances it is possible to prove something directly by considering
the entire class of cases that the proposition covers. While this class of cases

1For example, say we want to prove that whenever (x − y)2 > 0, it must be that
x > y. This is clearly false. However, by noting that x > y → x− y > 0→ (x− y)2 > 0
we may erroneously conclude that (x− y)2 > 0 → x− y > 0 → x > y. The problem is
that x− y > 0→ (x− y)2 > 0 but (x− y)2 > 0 6→ x− y > 0.

2An integer, a, is even if there exists an integer, b, such that a = 2b.
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can be large, it can often be divided into simple groups that share a common
property. Consider the following direct proof.

Example 22 To prove (directly) that the number 3 is an odd integer.3

This is equivalent to proving that there is no integer x, such that 2x =
3. Let’s consider every possible integer. We can divide these into all the
integers less than or equal to 1 and all the integers greater than or equal to
2. For every integer x ≤ 1 we have 2x ≤ 2; but for every integer x ≥ 2 we
have 2x ≥ 4. Hence every even integer must be less than or equal to 2 or
else greater than or equal to 4. Hence 3 is not an even integer.

In such cases, when you can successfully divide the set of all possible
cases and prove the proposition for each one, be doubly sure to explain
why the set of cases you have chosen is complete.

In many cases however it is enough to establish the result for a single
‘arbitrary’ element of the class. This often simplifies the problem. By arbi-
trary we simply mean that the element that we select has got no features
of relevance to the proof that is not shared by all other elements in the set.
Here is an example.4

Example 23 Proposition: Every odd integer is the difference of two perfect
squares. Proof: Choose an arbitrary odd integer, x. Being odd, this integer
can be written in the form x = 2y + 1. But 2y + 1 = (y + 1)2 − y2. Hence
x is the difference of two perfect squares.

3.3 Proof by Contradiction

To establish proposition P using a proof by contradiction you assume that
not-P is true and then deduce a contradiction. On the principle that a
true proposition does not imply a false proposition (but a false proposition
implies any proposition5) we then deduce that not-P is false and hence

3An integer is odd if it is not even.
4Consider also the followin joke from Solomon W. Golomb (in ”The Mathemagician

and the Pied Puzzler, A Collection in Tribute to Martin Gardner,” E. Berlekamp and
T. Rogers (editors), A K Peters 1999).
Theorem. All governments are unjust.
Proof. Consider an arbitrary government. Since it is arbitrary, it is obviously unjust.

The assertion being correct for an arbitrary government, it is thus true for all govern-
ments.

5Use the fact that a false proposition implies any proposition to solve the following
problems from the island of knights and knaves where knights always tell truth whereas
knaves always lie. (due to Raymond Smullyan):

• A says “If I’m a knight then P.” Is A a knight? Is P true?



26 3. How to Prove it I: Strategies of Proof

that P is true. It sounds like a long way of going about proving something
but in fact it often opens up many avenues.6

Proofs by contradiction are particularly useful for proving negative state-
ments, such as non-existence statements. They are also useful for proving
uniqueness statements.7

Example 24 Claim: There do not exist integers a and b such that 2a+4b =
3.
A direct proof of this claim would require finding a way to demonstrate

that for any pair of integers a and b, 2a+4b 6= 3. With an infinite number
of integers, this seems difficult. A proof by contradiction would proceed as
follows: Assume that there exist integers a, b such that 2a + 4b = 3. Now
since 2a+4b = 2(a+2b) and a+2b is an integer we have that 2a+4b = 3
is even. But this is false since 3 is odd. Hence we have a contradiction and
so there exist no integers a, b such that 2a+ 4b = 3.

Problem 25 (Strict monotonicity of contract curves) Consider a setting
in which two players have strictly convex preferences over points in Rn.
Consider a set of points, C, with the property that for any x ∈ C there
exists no point y such that y is weakly preferred to x by both players and
strictly preferred by at least one. Show that for any two points, x and y in
C, one player strictly prefers x to y while the other player strictly prefers
y to x.

Exercise 26 Prove that if x2 is odd then x is odd.

Exercise 27 Show that in any n-Player normal form game of complete in-
formation, all Nash Equilibria survive iterated elimination of strictly dom-
inated strategies.

• Someone asks A, “Are you a knight?” A replies: ”If I am a knight then I’ll eat
my hat”. Must he eat his hat?

• A says, ”If B is a knight then I am a knave.” What are A and B?

The following moral conundrum is also due to Raymond Smullyan: Suppose that one
is morally obliged to perform any act that can save the universe from destruction. Now
consider some arbitrary act, A, that is impossible to perform. Then it is the case that if
one performs A, the universe will be saved, because it’s false that one will perform this
impossible act and a false proposition implies any proposition. One is therefore morally
obligated to perform A (and every other impossible act).

6A closely related method is the reductio ad absurdum.The reductio attempts to prove
a statement directly and reaches a conclusion that cannot be true.

7These are of course related since a statement about uniqueness is a statement about
the non existence of a second object in some class.
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FIGURE 3.2. Necessary and Sufficient Conditions with Proofs by Contradiction.
From Banks and Duggan 2000

3.4 Establishing Monotonicity

For many problems you may want to show that some function or some
process is monotone. Establishing monotonicity is often interesting in its
own right; but it can also be used to establish that processes do not cy-
cle. In some cases establishing particular types of monotonic relations may
be used to establish the possibility of cycles. For continuous functions this
can often be done by signing the first derivative. But for more complex
processes this might not be possible. Consider for example the set of pos-
sible paths that a policy in Rn may take as it gets moved around by votes
and amendments. The path may be very chaotic. As another example con-
sider shifts in memberships of voting blocks, we can consider processes in
which individuals move backwards and forwards, but we may be interested
in whether a given pattern of blocks can ever resurface twice. This can be
done by establishing some strictly monotonic feature of the process.
A method that can be used in many cases is to identify a set of one

dimensional metrics that can be written as a function of the process at
hand. In the example of shifting policies it may be possible to show that in
each movement, the policy moves closer to some point, or that some player’s
utility always increases, or that the policy is contained n a sphere with
shrinking radius. For many complex processes there may be many possible
metrics–the size of the smallest group, the variance of some distribution,
and so on. If any of these metrics change monotonically with each step in
the process then the monotonicity of the metric can be used to establish the



28 3. How to Prove it I: Strategies of Proof

monotonicity of the process (and hence, in the case of strict monotonicity,
the absence of cycles).

Exercise 28 Problem 29 Consider the following process. A population
N = {1, 2, ...n} is divided into m groups, g1, g2, ...gm with membership size
of gk denoted by |gk|. Each individual has an associated weight of αi. There
exists a bargaining process through which each group receives a share of $1,
proportionate to its size, and each individual receives a share of her group’s
share in proportion to her relative weight. Hence yi = αiP

j∈gk αj
|gk|
N . In each

period one member and one group is randomly selected. The individual
member changes group membership from her own group into the selected
group if (a) her payoff is strictly higher in the selected group and (b) the
payoff of all members of the group also receive higher payoffs from the
switch. Question: does the same allocation of individuals to groups ever
occur twice. Prove it.

3.5 Establishing Uniqueness

Two approaches are proposed to prove uniqueness of a point a with some
property. The first is direct: first show that some point a exists with the
right properties, then show that any point b that possesses these properties
is equivalent to a. The second approach is proof by contradiction: assume
that two distinct points exist (satisfying the properties) and then show how
this produces a contradiction.

Example 30 Problem 78 will ask you to prove that if X is convex and com-
pact then “the four Cs” guarantee the existence of a unique “ideal point.”
The existence part follows from the Weierstrass theorem and the continuity
of u (see below). Uniqueness can be established as follows: Assume (con-
trary to the claim that there is a unique ideal point) that two distinct points
x and y both maximize u on X. Then, from the convexity of X, any point z
in the convex hull of x and y lies in X. Strict quasiconcavity implies that for
any z ∈ (x, y), ui(z) > min(ui(x), ui(y)). In particular, with ui(x) = ui(y)
we have ui(z) > ui(x). But this contradicts our assumption that x maxi-
mizes u on X. This establishes that there cannot be two distinct points in
X that maximize u.

3.6 Turning the Problem on Its Head

When you are stuck, progress can often be made by reformulating the
problem. The most common way of doing this is by “proving the contra-
positive”.
Proving the contrapositive:
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• If you are having difficulties proving that A → B, try proving the
equivalent statement that not B → not A.

• Similarly A→ not B is equivalent to B → not A.

Equivalencies involving quantifiers:

• “There does not exist an x such that P (x)” is equivalent to “For all
x, not P (x)”

• “It is not true that for all x, P (x)” is equivalent to “There exists
some x such that P (x) is not true”

• (This last equivalency also holds for “bounded quantifiers”): “It is
not true that for all x ∈ X, P (x)” is equivalent to “There exists some
x ∈ X such that P (x) is not true”

3.7 Style

Proofs do not have to read like computer code. Unlike your code you nor-
mally want people to read your proofs; first of all to check that they are
right, but also because proofs often contain a lot of intuition about your
results and if people read them they will likely have a better appreciation
of your work. So make them readable.
There is a lot of variation in the style of proof writing in political science

but in general it is fine to have proofs written mostly in English. Indeed
some object to the use of logical symbols of the form ∀ or ∃ when the
English is just as clear and not much longer. Typically you want a proof to
be compact but this means that there should not be any substantive flab,
not that there should not be any English. Elegance is a goal but the key to
the elegance of a proof is not in density of the prose but the structure of
the underlying argument. You can’t make up for the inelegance of a clumsy
proof by stripping out the English. In fact English can often make up for a
lot of math. It is permissible to use phrases such as “To see that the same
holds for Case 2, repeat the argument for Case 1 but replacing s0 for s00”;
such sentences are much clearer and more compact than repeating large
segments of math multiple times.
Beyond this, good proof writing is much like all good writing.
At the beginning, it is a good idea to say where you are going: setting

out the logic of your proof at the beginning makes the train of your logic
is easy to follow (Figure 3.3).

In the middle, it is good to use formatting to indicate distinct sections
of your proof; for example, different parts (the ‘if’ part, the ‘only if’ part),
cases and so on (Figure 3.4).
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FIGURE 3.3. Describe the strategy of your proof in the first sentence.Excerpt
from Fedderson (1992).

FIGURE 3.4. Fragment of complex proof in which multiple steps are laid out
explicitely. From Banks and Duggan (2000)

At the end it is good to say that you’ve shown what you wanted to show.
This can be a little redundant and is not necessary in a short proof but is
good form in a longer proof (Figure 3.5).

Finally, even if a lot of math is woven into your text, you are still re-
sponsible for ensuring that the whole follows the rules of English grammar
and syntax. Every sentence should be a complete English sentence, begin-
ning with a capital letter (in fact almost always beginning in English) and
ending with a period. A few rules of thumb follow:

• You cannot start a sentence in math like this “i ∈ N∗ implies condi-
tion z...”; instead you need something like: “If i ∈ N∗ then condition
z holds...”

• For clarity it is useful to use a few imperatives early in the proof:
“Assume that...”, “Suppose that...”, “Let ...”

• Most sentences that are math heavy begin with leaders like “Note
that...”, “Recall that...”, “Since...”, “But...”, “Therefore...”

• When in the middle of a sequence of steps, begin a sentence with a
gerund of the form “Adding...”, “Taking the derivative...” and so on
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FIGURE 3.5. Concluding a proof (Groseclose 2001)

(although this does not excuse you from using a main verb, even if
the verb is mathematical).

• When using theorems or lemmas you begin with “Applying...” or
“From...” or “By...”
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4
How to Prove It II: Useful Theorems

4.1 Existence I: Maximum and Intermediate Values

The first theorem we present is very simple but useful in a large range of
contexts. It provides sufficient conditions for the existence of a maximum:

Theorem 31 (Weierstrass Theorem) (or: the Maximum Value Theo-
rem). Suppose that A ⊂ Rn is non-empty and compact and that f : A→ Rn
is a continuous function on A. Then f attains a maximum and a minimum
on A.

Example 32 Consider a setting like that we discussed in our treatment
of the Coase theorem in which players can make transfers to each other.
In particular, assume that net transfers from Player 1 to Player 2 are
given by t12 ∈ A where A is a non-empty subset of R. Assume that each
player has utility ui : A → R over these transfers, where ui is continuous
for i ∈ {1, 2}. In this context we may be interested in knowing whether
there is a solution to the Nash bargaining problem, or whether there is a
utilitarian or Rawlsian optimum or a Nash equilibrium. The Weierstrass
theorem provides a positive answer to all of these questions, no matter what
the u functions look like (as long as they are continuous) if A is compact.
If A is not-compact, then all bets are off and more information is needed
about the u functions in order to be sure of solutions to these problems.

This result is commonly used for the first part of “existence and unique-
ness” claims regarding optimizing behavior. Note that compactness of A
and continuity of f are important to make sure that the graph of f is
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closed, if it were open then there would be risk that the supremum of the
graph would not be attainable.
The next result is useful in claiming the existence of some identifiable

threshold that can be used to partition actors into sets (e.g. those who like
some outcome and those who do not...).

Theorem 33 (Bolzano’s Theorem) (or: the Intermediate Value Theo-
rem). Suppose that A ⊂ R1 is non-empty and compact and that f : A→ R1
is a real continuous function on A, then for any two points a and b in A,
f takes every value between f(a) and f(b), for some points between a and
b.

Example 34 Assume that there is a continuum of individuals that can be
ordered in terms of how much they agree with the policies of some party.
Assume that the net transfers to each individual in the run-up to an elec-
tion is a continuous (although not necessarily monotonic) function of the
individual’s support for the party. Then if there is some individual who
stands to make a net gain and some individual who stands to make a net
loss, then we know that there is some individual with preferences between
these two who will be unaffected.

4.2 Existence II: Fixed Point Theorems

We now begin with a series of fixed point theorems. These have very wide
application but have been used especially for proving the existence of an
equilibrium of various forms (including Nash’s result). The idea is that if
you can use a function or a correspondence, f , to describe the way that a
system moves from one state, x, to another, f(x), then you can describe
a stable state as a point x∗ that is a fixed point of f , that is, with the
property that f(x∗) = x∗. A large number of fixed point theorems exist,
but they each have different constraints on the functions f that are required
to guarantee the existence of the fixed point.

Theorem 35 (Brouwer’s Fixed Point Theorem) Suppose that A ⊂
Rn is non-empty, compact and convex and that f : A → A is a contin-
uous function from A into itself. Then there is an a ∈ A with a = f(a).

Example 36 (of a mapping from R2 to R2) If one copy of this page is
crumpled up and placed on top of an uncrumpled copy, then there is a part
of the notes on the crumpled page that lies directly over that same part on
the uncrumpled page (even if you place the page upside down).
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FIGURE 4.1. Brouwer: There are 3 fixed points in the first panel, but none in
the second panel (because f is not continuous)

Example 37 Let individuals have ideal points distributed with positive
density over the ideological space [0, 1]. Assume that there is some con-
tinuous shock to everyone’s ideology (that is, individuals may take any new
position on [0, 1] but the shock is such that ideological neighbors remain ide-
ological neighbors). Then at least one person will not change her position.

The following theorem is useful if you can not rely on your function being
continuous but you do know that it is non-decreasing...

Theorem 38 (Tarski’s Fixed Point Theorem) Suppose that A = [0, 1]n

and that f : A → A is a non-decreasing function. Then there is an a ∈ A
with a = f(a).

The third fixed point theorem that we introduce is good when reaction
functions are set-valued rather than point-valued. This is the case for ex-
ample whenever there is more than one best response to the actions of
other players. In such contexts we need a fixed point for correspondences
rather than for functions. And we need a new notion of continuity:

Definition 39 let A and B be closed subsets of Rn and Rk respectively.
The correspondence f : A → B is “upper hemicontinuous” if it has a
closed graph and for any compact subset, C, of A, f(C) is bounded.

The intuitive definition given by Starr (1997) for upper hemicontinuity
(also called upper semicontinuity) is this: if you can sneak up on a value in
the graph of f then you can catch it.1

1His corresponding idea for lower hemicontinuity is: if you can catch a value, then
you can sneak up on it.
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FIGURE 4.2. Tarski: Note that f is not continuous but there is still a fixed point
because f is non-decreasing
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(ii) Here the graph of g is open (the white circle 
represents a point that is not in the graph of g) 
and so g is not upper hemicontinuous 

(i) Here the graph of g is closed (there are 
two values for f(a)) and bounded and so f 
is upper hemicontinuous 
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FIGURE 4.3. upper hemicontinuity

Theorem 40 (Kakutani’s Fixed Point Theorem) Suppose that A ⊂
Rn is non-empty, compact and convex and that f : A → A is an upper
hemicontinuous correspondence mapping from A into itself with the prop-
erty that for all a in A we have that f(a) is non-empty and convex. Then
there is an a ∈ A with a ∈ f(a).

See Figure 4.4 for an illustration of the theorem.
The following theorem, closely related to Brouwer’s fixed point theorem,

is useful for mappings from spheres to planes (for example, if the action
set is a set of directions that players can choose or if the outcome space
is spherical, such as is the case arguably for outcomes on a calendar or on
the borders of a country.)
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FIGURE 4.4. The figure shows the correspondance f. Note that the graph of f
is convex valued and that there is a fixed point.

Theorem 41 (Borsuk-Ulam) Any continuous function from an n-sphere
into Rn maps some pair of antipodal points to the same point. (Two vectors
v and v0 on a sphere centered on the origin are “antipodal” if v = −v0)

Example 42 There is always a pair of points on opposite sides of the Earth
that have both the same temperature and the same barometric pressure.

4.3 Application: Existence of Nash Equilibrium

Example 43 (Existence of a Nash equilibrium) Recall that we said
before that a profile of mixed strategies σ∗ is a “Nash equilibrium” if
for each i ∈ N , we have: σ∗i ∈ arg max

σi∈∆(Ai)
(ui(σi,σ

∗
−i)). Now we want

to show that such an equilibrium exists whenever A is finite. The strat-
egy of proof is simple: we wish to find a fixed point of the correspondence
f(σ) = (arg max

σi∈∆(Ai)
(ui(σi,σ−i)))i=1,...,n. Any such fixed point is a Nash

equilibrium. In practice this requires a search to see if this correspondence
satisfies the conditions of some fixed point theorem. Once the search is com-
plete the actual proof simply requires showing that all of the conditions are
satisfied. In this case we will show that the conditions of Kakutani’s fixed
point theorem are satisfied. We work through the conditions one by one.
First, for convenience, let’s use Σi to denote ∆(Ai) and Σ to denote

×j∈N∆(Aj). Now, define the correspondence fi(σ) = arg max
σi∈Σi

(ui(σi,σ
∗
−i))

where fi(σ) is the set of “best responses” by player i, conditional upon all
the strategies played by all the other players (as recorded in the vector σ).
Note that fi(σ) maps from Σ into Σi. Next, define a correspondence that
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is the Cartesian product of the individual reaction correspondence: f =
(f1, f2, ..., fn) : Σ→ Σ; hence f is a correspondence that describes the best
responses of each player to the strategies of all the other players.
Step 1. Σ is non-empty, compact and convex. Let’s take a second

to think about what each Σi looks like. If player i has k pure strategies avail-
able, then a possible mixed strategy available to him is a set of probabilities
associated with each of the k strategies: (p1, p2, ..., pk). This is just a point
in Rk; in fact, because all the probabilities sum to 1 it is a point lying on
a simplex2 of dimension k − 1. And so the set of all such points, Σi, is
a simplex and in particular it is closed, bounded, non-empty and convex.
Similarly, Σ is closed, bounded, non-empty and compact. Hence f maps
from a non-empty, compact and convex set into itself.
Step 2. For every σ, each f(σ) is (i) non-empty and (ii) convex.

We check these conditions for each fi(σ). To check (i) we simply need to
make sure that ui(σi,σ−i) attains a maximum for each for each σ−i. For
this we use the Weierstrass theorem, making use of the fact that Σi is
compact and ui(σi,σ−i) is continuous in σi (continuity follows from the
fact that ui(.) is linear in σi which itself follows from the Expected Utility
Theorem). To check (ii) we also use the Expected Utility Theorem. Assume
that there exist two distinct values, σ0i and σ00i , that maximize ui(σi,σ−i).
We wish to confirm that for any λ ∈ (0, 1), λσ0i + (1− λ)σ00i is also a best
response. But, from linearity, ui(λσ0i + (1 − λ)σ00i ,σ−i) = λui(σ

0
i,σ−i) +

(1 − λ)ui(σ
00
i ,σ−i) and hence ui(λσ

0
i + (1 − λ)σ00i ,σ−i) = ui(σ

00
i ,σ−i) =

ui(σ
0
i,σ−i). This establishes convexity of fi(σ) and hence of f(σ).

Step 3. The correspondence f is upper hemicontinuous. This
is perhaps the least obvious part. Boundedness of the graph of f is not a
problem since we have that Σ is itself bounded (Σ is compact). So we just
need to establish that the graph of f is closed. A good rule of thumb is
that if it seems difficult, try a proof by contradiction. Assume then that f
is not upper hemicontinuous and in particular that the graph of f is not
closed. Consider a sequence (σn, σ̃n) where each σ̃n is an element of f(σn).
Assume now that that the sequence converges to (σ, σ̃), but that, contrary
to upper hemicontinuity σ̃ is not an element of f(σ). In particular, for
some player there exists some rival strategy σ0i such that ui(σ

0
i,σ−i) >

ui(σ̃i,σ−i). But if this is true then for sufficiently small ε > 0 we have
ui(σ

0
i,σ−i) > ui(σ̃i,σ−i) + 2ε and hence ui(σ

0
i,σ−i) − ε > ui(σ̃i,σ−i) + ε

[∗]. Now, for sufficiently large n (when (σn, σ̃n) is arbitrarily close to (σ, σ̃))
we have, from the continuity of u in σ, that ui(σ̃i,σ−i) is arbitrarily close to
ui(σ̃

n
i ,σ

n
−i) and hence (for sufficiently large n), ui(σ̃i,σ−i)+ε > ui(σ̃

n
i ,σ

n
−i)

[∗∗]. By the same reasoning we have ui(σ0i,σn−i) + ε > ui(σ
0
i,σ−i) [∗ ∗

2An n − 1 dimensional simplex is a shape (a polytope) with n affinely independent
vertices. A two dimensional simplex for example is a triangle (this simplex can be formed
by taking all the convex combinations of three affiniely independent points in R3).
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∗]. Drawing together the findings in [∗] − [∗ ∗ ∗] we have ui(σ0i,σn−i) >
ui(σ

0
i,σ−i) − ε > ui(σ̃i,σ−i) + ε > ui(σ̃

n
i ,σ

n
−i) and hence ui(σ

0
i,σ

n
−i) >

ui(σ̃
n
i ,σ

n
−i), but this contradicts our assumption that σ̃

n
i ∈ fi(σn). This

contradiction establishes upper hemicontinuity.
Together Steps 1-3 provide all the conditions needed to use Kakutani’s

fixed point theorem to establish that f has a fixed point.

Exercise 44 (Brouwer) This exercise establishes conditions necessary for
the existence of an equilibrium in a two player alternating offers bargain-
ing game over Rn. Assume that players have strictly convex preferences
defined over X × T given by %1and %2 and that for any element z in X,
(z, 0) %i (z, 1) for i ∈ {1, 2}.
Prove that there exists a pair (x̄, ȳ) ∈ Rn ×Rn such that:
x̄ maximizes %1 subject to (x, 0) %2 (ȳ, 1) and
ȳ maximizes %2 subject to (y, 0) %1 (x̄, 1)

4.4 Theorems to Establish Uniqueness

Guaranteeing the existence of a fixed point does not tell you much about the
fixed point. One important property of fixed points that you might want to
know is whether the fixed points are unique. This is particularly important
for contexts in which you want to compare properties of equilibria across
settings. In general, guaranteeing uniqueness is difficult, however, for some
applications, the following result may help.3

Theorem 45 (Contraction Mapping Theorem) (Also called “Banach’s
Contraction Principle”). Suppose that A ⊂ Rn is non-empty and that
f : A → A has the property that for some measure of distance d(., .) there
exists some constant k < 1 such that d(f(a), f(b)) ≤ kd(a, b) for all a, b in
A, then any fixedd point of f is unique.

A related and easy-to-use result is that if in a two player game the
reaction functions of both players are continuous and have slope less than
1, then there is a unique Nash equilibrium.

3For more in this area you can consult work that aims to identify con-
ditions for a reaction function to be a contraction. One approach that
has proved fruitful is identifying when the Hessian uaa displays “diagonal
domnance.” See for example references in: Gerard P. Cachon and Serguei
Netessine. 2003. “Game Theory in Supply Chain Analysis.” Working Paper.
http://opim.wharton.upenn.edu/~cachon/pdf/game_theoryv1.pdf Further results can
be found in the literature on “supermodular games.”
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FIGURE 4.5. Example of a Contraction Mapping

4.5 Methods to Make Results More General:
Genericity

One way to think about the generality of a proposition is in terms of the
genericity of the set for which the result is true.
The idea here is that we may want to make statements of the form:

“such and such a property never occurs except in really exceptional cir-
cumstances” or “I have proved this for such and such a situation, but in
fact that situation is the type of situation that we would ‘essentially always’
expect to observe.”
The question is: how do we make statements of this form precise? Here

the notion of genericity comes in handy.

Definition 46 Consider some set S ⊂ A. S is “generic” in A if it is
open and dense.

Let’s unpack that statement:

• if it is open: for any point z ∈ S, there exists an ε such that every
point in B(z, ε) lies in S. (that is, ∀z ∈ S∃ε > 0 : B(z, ε) ⊂ S)

• if it is dense: for any point x ∈ A\S and for every ε > 0 there
exists some point y ∈ S in B(x, ε) (that is, ∀ε > 0∀x ∈ (A\S)∃y ∈
B(x, ε) ∩ S)

Example 47 Consider the set of preference profiles in which three players
each have an ideal point in R2. Let’s say that we want to show that gener-
ically these three ideal points will not lie on a straight line. To do this we
need to define a set, A, whose typical member is a set of three points in R2
(e.g. x = {x1, x2, x3} ∈ R2 ×R2 ×R2 ). We say that an element y of A is



4.6 General functional forms and implicit function theorems 41

in the neighborhood B(x, ε) of x ∈ A if |xi − yi| ≤ ε for i = 1, 2, 3. Let T
denote the set of elements of A whose components all lie in a straight line.
The aim is then to show that the complement of T in A is open and dense.

4.6 General functional forms and implicit function
theorems

In many cases, to render your results more general, you should avoid choos-
ing particular functional forms. For example, in the case of utility functions,
such as ui : Ai×Aj → R1, you ideally will want to put as few constraints as
possible on the function, and simply impose conditions of the form ∂2u1

∂x12
< 0

or ∂2u1
∂x1∂x2

< 0. The problem with such a lack of specificity is that it often
seems difficult to make substantive statements about players’ optimal be-
havior. In particular it is often impossible to derive explicit expressions
describing behavior.
Commonly we might know something of the form: at an equilibrium

point some condition might hold; for example f(x∗, y∗) = 0, but this on
it’s own does not give us much of an indication of how x∗ relates to y∗.
Such a relation might however be of substantive interest. Implicit function
theorems allow you to get a handle on this by letting you to infer the
existence of an explicit function, using other properties you know about the
problem. This can be enough to make statements regarding how behavior
changes as features of the game change.

Theorem 48 (An Implicit Function Theorem ) Let f(x, y) : R2 →
R1 denote a continuous function on a ball around some point (x∗, y∗). If
∂f(x∗,y∗)

∂y 6= 0, then there exists a continuous function y = y(x), defined on
an interval about the point x∗,such that
(i) f(x, y(x)) = f(x∗, y∗)
(ii) y = y(x∗) = y∗

(iii)dy(x
∗)

dx = −
∂f(x∗,y∗)

∂x
∂f(x∗,y∗)

∂y

Similar theorems exist for more general functions f . Implicit function
theorems like this can be used to combine information on the signs that we
have for the first and second derivatives of functions with general conditions
that we know have to hold when players play optimally in order to make
predictions.

To develop your intuitions consider the following, let f(x, y) be given
by f(x, y) = ln(x) + y. And assume that at x∗, y∗, f(x∗, y∗) = 0. Hence
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ln(x∗)+y∗ = 0. Clearly it is possible to write an explicit function of the form
y∗ = − ln(x∗). If we consider small movements around x∗ we could think
of this as a function of the form y∗(x) = − ln(x). For this function we can
see readily that dy(x∗)

dx = − 1
x . We get this from differentiating an explicit

function. But even if we had not created an explicit function, we could use

the fact that dy(x
∗)

dx = −
∂f(x∗,y∗)

∂x
∂f(x∗,y∗)

∂y

to deduce that dy(x
∗)

dx = −
1
x

1 = −
1
x .

Let’s see this in operation. In the following example, the x’s and y’s are
the strategies taken by players, and the f functions are their utilities over
the actions. we use the theorem to see how one player’s optimal strategy
changes as a function of the other player’s optimal strategy.

Example 49 As an example, consider a two stage extensive form public
goods game of perfect information like the Coase problem we saw before.
Assume that each player i ∈ {1, 2} has to choose some xi from a range
[xi, xi] ⊂ R1. Assume that each player has a twice continuously differen-
tiable utility function ui(xi, xj) with ∂2ui

∂xi∂xi
< 0. Assume further that each

player benefits from the contribution of the other, ∂ui(xi,xj)
∂xj

> 0, but only
benefits from their own contributions within certain ranges; in particular
we assume that ∂ui(xi,xj)

∂xi
> 0, and ∂ui(xi,xj)

∂xi
< 0 for all feasible xj. This

will guarantee that the solution to the players’ maximization problems are
interior solutions.
Note that we have not yet made any assumptions about ∂2ui

∂xi∂xj
.

Let’s see if we can work out what the impact of the structure of the game
and the order of play is on the players’ actions and how this might depend
on the values of ∂2ui

∂xi∂xj
.

So, as always, to solve the game, go to the end of the game tree and
consider player 2’s choice of x2, conditional upon whatever value of x1,
say x∗1, that player 1 chooses. Now, if there is an interior optimum, then
given the concavity of Player 2’s optimization problem, we have that at the
optimum the following first order condition should be satisfied:

∂u2(x
∗
2, x
∗
1)

∂x2
= 0 (4.1)

The problem we have is that with these general functional forms we can-
not write down explicitly what value of x2 satisfies this condition. However,
if we can assume that there exists a value that satisfies the condition, then
we can make use of “implicit function theorem” to make statements about
how that value depends on x1. The “implicit function theorem” tells us that,
even if we can’t solve for x2, there does exist a function x2(x1), such that
x2(x

∗
1) = x

∗
2 and :

dx2(x
∗
1)

dx1
= −

∂2u2(x
∗
2,x
∗
1)

∂x1∂x2
∂2u2(x∗2,x

∗
1)

∂x2∂x2

(4.2)
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This result already tells you about how Player 2’s optimal actions are
affected by 1’s actions: It means that if ∂2u2

∂x2∂x2
< 0 then, around the op-

timum, the sign of dx2(x
∗
1)

dx1
is the same as the sign of ∂2u2(x

∗
2,x
∗
1)

∂x1∂x2
. This is

somewhat intuitive but still useful: it means that if the marginal utility to 2
of taking an action is greater the higher Player 1’s action, then, when she
optimizes, she will choose higher values of x2 whenever x1 is higher.
Now, let’s go up the game tree to Player 1’s optimization problem.
Player 1 wants to maximize u1 = u1(x1, x2) but knows that, in equilib-

rium, x2 will be determined by the function we have identified above, that
is, by x2 = x2(x1).
So to work out her optimal strategy she totally differentiates u1.
Total differentiation then gives:

du1 =
∂u1(x1, x2(x1))

∂x1
dx1 +

∂u1(x1, x2(x1))

∂x2
dx2 (4.3)

and so:

du1
dx1

=
∂u1(x1, x2(x1))

∂x1
+

∂u1(x1, x2(x1))

∂x2

dx2
dx1

(4.4)

We have then (substituting from above) that if both players have interior
solutions to their maximization problems, we need:

∂u1(x
∗
1, x2(x

∗
1))

∂x1
+

∂u1(x
∗
1, x2(x

∗
1))

∂x2

⎡⎣− ∂2u2(x
∗
2,x
∗
1)

∂x1∂x2
∂2u2(x∗2,x

∗
1)

∂x2∂x2

⎤⎦ = 0 (4.5)

Bringing our results together then we have that the equilibrium strategies
(x∗1, x∗2) satisfy:

∂u2(x
∗
2, x
∗
1)

∂x2
= 0 (4.6)

and

∂u1(x
∗
1, x2(x

∗
1))

∂x1
+

∂u1(x
∗
1, x2(x

∗
1))

∂x2

⎡⎣− ∂2u2(x
∗
2,x
∗
1)

∂x1∂x2
∂2u2(x∗2,x

∗
1)

∂x2∂x2

⎤⎦ = 0 (4.7)

Let’s now use this condition to answer some questions:
Question: Do players contribute more of less in the subgame perfect

equilibrium of the extensive form game, relative to the Nash equilibrium of
the normal form game? Does the order of play matter?
Answer: it depends on the sign of ∂2u2(x

∗
2,x
∗
1)

∂x1∂x2
. And we can work out

how.
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The conditions for equilibrium in the normal form game are that the
equilibrium strategies, call them (xn∗1 , x

n∗
2 ), satisfy:

∂u1(x
n∗
1 , x

n∗
2 )

∂x1
= 0 (4.8)

and

∂u2(x
n∗
2 , x

n∗
1 )

∂x2
= 0 (4.9)

Now, with ∂2u2(x
∗
2,x
∗
1)

∂x1∂x2
= 0, this is clearly the same condition as the con-

dition for the subgame perfect equilibium. And so order of play makes no dif-
ference nor does the sequential structure. Not so however when ∂2u2(x

∗
2 ,x
∗
1)

∂x1∂x2
6=

0. To see why consider the following claim:

Claim 50 Let (xn∗1 , xn∗2 ) denote the equilibrium in the simultaneous game.
If ∂2u2

∂x1∂x2
= 0, and ∂2u1

∂x1∂x2
> 0 then (x∗1, x∗2) = (xn∗1 , xn∗2 ). If

∂2u2
∂x1∂x2

> 0,

and ∂2u1
∂x1∂x2

= 0 then (x∗1, x∗2)À (xn∗1 , xn∗2 ).

Remark 51 The first part of the claim is what we saw already: if the
optimal actions of the second player are independent of the actions of the
first player, then the sequential structure adds nothing. So let’s look at the
second part: the second part tells us both that the subgame perfect Nash will
be different to the Nash of the normal form game and that the order of play
matters.

Proof. (Of the second part) If x∗2 > xn∗2 , then with
∂u2(x

∗
2,x
∗
1)

∂x2
=

∂u2(x
n∗
2 ,xn∗1 )
∂x2

=

0 and ∂2u2(x
∗
2,x
∗
1)

∂x1∂x2
> 0 we must have x∗1 > xn∗1 .4 Similarly if x∗1 > xn∗1 we

must have x∗2 > xn∗2 . Hence either (x∗1, x∗2) À (xn∗1 , xn∗2 ) or (x∗1, x∗2) ≤
(xn∗1 , xn∗2 ). Assume that (x∗1, x∗2) ≤ (xn∗1 , xn∗2 ), then, since ∂u1

∂x1
is decreasing

in x1, but ∂2u1
∂x1∂x2

= 0, we have ∂u1(x
∗
1 ,x
∗
2)

∂x1
≥ ∂u1(x

n∗
1 ,xn∗2 )
∂x1

. In that case, since

∂u1(x
∗
1,x
∗
2)

∂x1
+

∂u1(x
∗
1,x
∗
2)

∂x2

"
−

∂2u2(x
∗
2 ,x
∗
1)

∂x1∂x2
∂2u2(x

∗
2 ,x
∗
1)

∂x2∂x2

#
=

∂u1(x
n∗
1 ,x2

n∗)
∂x1

= 0 we must have

that ∂u1(x
∗
1,x
∗
2)

∂x2

"
−

∂2u2(x
∗
2 ,x
∗
1)

∂x1∂x2
∂2u2(x

∗
2 ,x
∗
1)

∂x2∂x2

#
≤ 0. However since ∂u1

∂x2
> 0, ∂2u2

∂x1∂x2
> 0 and

∂2u2
∂x2∂x2

< 0, we have ∂u1(x
∗
1 ,x
∗
2)

∂x2

"
−

∂2u2(x
∗
2 ,x
∗
1)

∂x1∂x2
∂2u2(x

∗
2 ,x
∗
1)

∂x2∂x2

#
> 0, a contradiction.

4 [Smaller steps] To see this, note that ∂u2(x1,x2)
∂x2

is strictly decreasing in x2, but

strictly increasing in x1, so if x∗2 > x
n∗
2 then ∂u2(x

∗
2 ,x
∗
1)

∂x2
<

∂u2(x
∗
1 ,x

n∗
2 )

∂x2
, but if x∗1 ≤ xn∗1

then ∂u2(x
∗
1 ,x

n∗
2 )

∂x2
≤ ∂u2(x

n∗
2 ,xn∗1 )

∂x2
and so ∂u2(x

∗
2 ,x
∗
1)

∂x2
<

∂u2(x
∗
1 ,x

n∗
2 )

∂x2
≤ ∂u2(x

n∗
2 ,xn∗1 )

∂x2
→

∂u2(x
∗
2 ,x
∗
1)

∂x2
<

∂u2(x
n∗
2 ,xn∗1 )

∂x2
, contradicting ∂u2(x

∗
2 ,x
∗
1)

∂x2
=

∂u2(x
n∗
2 ,xn∗1 )

∂x2
= 0.
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Remark 52 The logic of the second part is illustrated in Figure 4.6. In
the figure, Player 2’s best response function is the implicit function. The
intuition is that with ∂2u2(x

∗
2,x
∗
1)

∂x1∂x2
> 0, Player 1 will put more in precisely so

that this will increase the amount that the second player puts in. The logic
is reversed however for ∂2u2(x

∗
2,x
∗
1)

∂x1∂x2
< 0, in this case Player 1 will contribute

less in equilibrium than she would were she non-strategic.5 The intuition is
that the more I put in, the less that player 2 will put in and so the less I
benefit, on the margin, from my contribution. This amplifies the Prisoner’s
dilemma aspect of a public goods game of this form.

U U2,
Player 2’s strategy 

Player 1’s 
strategy 

Player 1’s 
indifference 

curves 

Player 2’s 
indifference 

curves 

FIGURE 4.6. The dashed line is Player 2’s best response function to Player 1; the
solid (horizontal) line is 1’s best response to Player 2’s satrategy. the intersection
is a Nash equilibrium (marked with a bold square). But if Player 1 moves first and
player 2 responds, the equilibrium will be the point marked with a bold circle.

This example illustrates how, using relatively little information on prefer-
ences, we can make substantively interesting statements. In this case about

5To see this, let’s take the first case. Notice that with ∂2u2(x
∗
1 ,x
∗
2)

∂x1∂x2
< 0, the term

in square brackets is positive and this makes the marginal contribution of x1 to player
1’s welfare more negative everywhere. For the condition to hold, the more negative is

−
⎡⎣ ∂u1(x

∗
1 ,x2(x

∗
1))

∂x2

∂2u2(x
∗
1 ,x
∗
2)

∂x1∂x2
∂2u2(x

∗
1 ,x
∗
2)

∂x2∂x2

⎤⎦ the larger must ∂u1(x
∗
1 ,x2(x

∗
1))

∂x1
be; but with ∂2u2

∂x1∂x1
< 0,

this requires that x1 be lower.
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how the sequential structure of the game affects equilibrium strategies, and
about how it matters who, if anyone, goes first.

4.7 Methods to Make Proof-writing Easier
(Without Loss of Generality...)

You will often find a line in the middle of a proof that says “assume with-
out loss of generality that...” or simply “assume w.l.o.g. that...” followed
by what may appear to be an unjustified simplification of the model or
unjustified adjustment of the “givens” of a proposition.
The idea behind the use of w.l.o.g. is that you can make assumptions

about the values or behavior of parts of your model that make proving
propositions clearer and easier without altering the structure of the prob-
lem.
Warning: To invoke w.l.o.g. you need to be sure that the adjustments you

make do not alter the structure of the problem. If it is not obvious that the
adjustment is without loss of generality you should add an explanation for
why it is in fact w.l.o.g.
In practice w.l.o.g. is often invoked inappropriately. Here are a couple of

guidelines on when w.l.o.g. can be invoked.
W.l.o.g. can be invoked to normalize utility functions. Or, often, to as-

sume that one quantity is at least as great as another (whenever it is the
case that corresponding results follow whenever the opposite inequality
holds). From our discussion of Von Neumann Morgenstern utility functions
we should feel comfortable normalizing the utility functions of all players
such that their utility at some outcome, such as the status quo, sq, is given
by some arbitrary number (e.g. 0). Having done this we can further nor-
malize by fixing the utility of any player at some other outcome, such as
his ideal point, y to 1, provided that the player prefers y to sq.6 We can
not, w.l.o.g., impose an arbitrary monotonically increasing transformation
of the utility function and then proceed to evaluate a player’s preferences
over lotteries.
In spatial games we often have degrees of freedom in labelling the axes

and the orientation of the policy space. Hence for example if there are two
players with distinct ideal points in the interior of R2, we can, w.l.o.g., rela-
bel the space so that one player has an ideal point at (0, 0) and the other’s
ideal is at (1, 1). We cannot do so, w.l.o.g., if the ideal points are not neces-
sarily distinct or if the labels of the axes have meaning in the context of the
model (as they do in models of structure-induced equilibrium). We cannot
arbitrarily assume values for the ideal points of 3 players in R1 (but can we

6The point is that with Von Neuman Morgenstern utilities we have two degrees of
freedom to play with for each individual–an intercept term and a slope term.
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in R2?). If X is a convex and compact subset of R1 we can assume, w.l.o.g.,
that X = [0, 1]. If X is not necessarily compact or convex, we cannot make
this assumption, w.l.o.g. If two players have elliptical indifference curves,
we can assume, w.l.o.g., that one of them has circular indifference curves;
but we cannot assume, w.l.o.g., that they both do.
If we know that bargaining outcomes are efficient and independent of

irrelevant alternatives, then we can restrict our attention in two person
bargaining over a multidimensional space to bargaining over a one dimen-
sional space, w.l.o.g., we cannot do so, w.l.o.g., if there are three players or
if irrelevant alternatives matter.

Problem 53 Go to JSTOR and select all political science journals. Search
for all articles containing the text “without loss of generality.” You should
find at least 120 hits. Randomly sample 4-5 hits from this list and go to the
“page of first match.” For each of these hits try to satisfy yourself whether
or not the w.l.o.g. assumption is indeed w.l.o.g.

Exercise 54 A very common w.l.o.g. assumption is that in voting over
outcomes arrayed on a single dimension in which all players have single
peaked preferences, collectivities (such as legislatures) can be represented by
the median of those collectivities. Is this assumption w.l.o.g.? In particular
is it the case that the preferences of the majority of a legislature over any
two options in [0, 1] will be the same as the preferences of the median of
the legislature over those two options?

4.8 Readings for Next Week

The Varian reading is unavoidable, it’s excellent and extremely useful. The
Davies piece, it’s very short and also fun, and a good model for our class-
room discussion in later weeks... It is not however top priority. The Starmer
piece is well worth while, it gives a thorough treatment of the representation
of preferences by VNM utility functions, as well as some alternatives to this
practice. Make sure you understand the logic of the graphs on p. 340-341,
these will be used throughout and contain quite a lot of information. This
paper is worth reading in part because it shows how open this field is, even
if the concerns raised are concerns that formal modelers typically ignore.
if you want more teh first two pieces on the recommended readings should
be read at some point over the course of the term and before you write up
your paper.
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5
What to Prove I: First Define your
game

It’s a good idea to begin by clearly defining your game (or class of games)
and there are conventions for this that you can follow. Following these
makes reading your paper easier. It also provides you with a check list to
make sure that you have in fact made all the assumptions you need in order
to get going. And finally this check list can be used as a tool for you to
scrutinize the set of assumptions that you have imposed on your model.
The items on your list should typically include your assumptions about
the game’s: Players, Action Sets, Payoffs and Information (PAPI). Exactly
what you need will depend on the form of the game:

5.1 Normal Form Games (Games in Strategic
Form)

5.1.1 Definition

To define a “normal form” (or, equivalently a “strategic form”) game
you need to define three sets:

• A set of players N . The set of players is normally a finite set, for
example: “let N = {1, 2, ..., n} denote the set of players....” It can
however sometimes be useful to represent a large population with a
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continuum.1 Typically the set of players are individuals; they may
however be groups or other entities if those entities satisfy what-
ever behavioral or rationality assumptions your model requires (and
Arrow’s theorem warns you that assuming they do is not an easy
assumption).

• A set of feasible strategies (that includes pure as well as mixed
strategies) for each player Ai. Again this can be finite (“Let Player
i’s strategy set be given by Ai = {L,R}”) or infinite (“Let Player
i’s strategy set be given by Ai = [0, 1]”). Common impositions for
infinite strategy sets are that they be closed and bounded and that
they be convex.

• Either a set of preference relations (%i) or a set of utility func-
tions (ui) that represent the players’ attitudes to the outcomes that
result from the different choices of actions. Each utility function maps
from A1 ×A2 × ...×An into R1.

These sets provide sufficient information to represent the game. Depend-
ing on the representation of preferences, the normal form game, G, is com-
pletely described by the triples:

G = hN, (Ai)i∈N , (%i)i∈N i or G = hN, (Ai)i∈N , (ui)i∈N i

Note that in the above representation I did not include an “outcome
space.” The reason for this is that strategies determine the outcome, hence
preferences over outcomes can be represented as preferences over collections
of strategies. If however a representation of outcomes is important for your
game then you can define an outcome mapping, say f : A1×A2×...×An →
X, where X, as before, is the set of feasible outcomes and then represent
utility functions as a mapping from X into R1.2 if you choose to do this
then the game may be represented as:

G = hN, (Ai)i∈N ,X, (%i)i∈N i

...where (%i)i∈N is defined over elements of X.

1 In this case, typically the distribution of characteristics of N can be represented
by a continuous distribution over some possible set of types. For example: “Assume a
contimuum of players with ideal points uniformly distributed over the interval [0,1].” Or
more generally: “Let the set of possible types be given by Θ ⊂ Rn.And let the set of
players be represented by a measure space (Θ,B, f) where B is the σ-algebra of Borel
subsets of Θ and f is a finite measure with

R
Θ df = 1.”

2Doing the two step process does not add much but you may find that it provides
an easier way to think about the political situation you are trying to model. Warning: if
you do this you will need to define the outcome space so that it includes all results from
all possible strategies, and this can include lotteries over more primitive outcomes.
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5.1.2 Pure and Mixed Strategies

For the game G = hN, (Ai)i∈N , (%i)i∈N i, let us assume that the set Ai
corresponds to a discrete set of options for player i, which we term i’s set
of “pure strategies.”
Consider now a larger set of strategies corresponding to the set of all

possible lotteries, or “mixed strategies” over these action sets3; these
lotteries assign some probability to each pure strategy, with all probabilities
summing to 1. We will call the set of such mixed strategies ∆(Ai), or more
simply, Σi, and use σi to refer to a typical element of Σi. In this case, for
any action ai in the player’s action set we let σi(ai) denote the probability
that the player takes action ai.
Defining Σ = ×i∈NΣi, we can then let σ denote a profile of mixed strate-

gies where σ ∈ Σ. It’s easy to check that by this definition any pure strategy
is itself a mixed strategy (sometimes called a “degenerate mixed strategy”).
Finally, we can define a utility function as a function that maps from Σ
into R1.

5.1.3 Illustrating normal form games

Unless the strategy set is non-finite or very complex or there are many
players, you can normally represent a normal form game with a payoff (bi-
)matrix. Doing so will make the game more transparent for your readers
and will typically make the solution more obvious. In a two player game, if
the strategy space for each player is not finite but is “one dimensional” you
can present a continuous version of the payoff matrix as a 3-d graph whose
two dimensional floor (si, sj) represents the combinations of strategies of
the two players and whose vertical axis measures the payoffs to each of the
two players that correspond to the strategy combinations of the two players
(hence the graph would show two surfaces corresponding to ui(si, sj) and
uj(si, sj)).

Example 55 (Prisoners’ Dilemma with continuous action space)
Let the set of players be given by N = {1, 2}. Let the strategy space for each
i ∈ N by Si = [0, 1] with typical element si. Finally, assume that each player
has utility function ui = 2sj − s2i . Try to draw a continuous version of the
payoff matrix; and then try to get a computer to draw it.

3To distinguish the game G = hN, (Ai)i∈N , (ui)i∈N i from the game G =
hN, (∆(Ai))i∈N , (ui)i∈N i, Osborne and Rubinstein refer (briefly) to the latter as the
“mixed strategy extension” of the former.
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FIGURE 5.1. Representation of a 2 Player Prisoners’ Dilemma with Continuous
Action Spaces. The graph shows two surfaces, representing player payoffs over
continuous action spaces, each player’s payoff is increasing in the other person’s
strategy and decreasing in her own strategy.

5.2 Extensive Form Games

5.2.1 Defining Extensive Form Games of Complete
Information

To represent an extensive form game with complete information you need
to replace the notion of an action set with the richer notion of a game tree,
T . The game tree for extensive form games with complete information
consists of a pair hH,P i in which:

1. H is a set of sequences or “histories” that satisfies a couple of simple
nesting properties. To describe these, let us say that a finite sequence
h0 with k0 elements is a “truncation” of a possibly infinite sequence
h with k > k0 if h0 consists of the first k0 elements of h. Hence ∅,
(a), and (a, b) are truncations of (a, b, c). The nesting properties are
then: (1.) if a sequence h is in H, then any truncation of h is also in
H. (2.) If all truncations of an infinite sequence h are in H, then h is
in H.
We say that a sequence is “terminal” if it is not a truncation of some
other history. All infinite sequences are terminal.
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1. P , a “player function,” which indicates which player plays after
each non-terminal history in H. Hence P (h) = 1 means that Player
1 moves after history h.

Given these definitions we can represent an extended form game of com-
plete information with:

G = hN,H,P, (%i)i∈N i or G = hN,H,P, (ui)i∈N i

Note that we have not defined the action set as part of the game. It
can be defined however from the elements that we have used; in particular
the action set of a player i at a history h is given by the set of actions
that, when appended to h, are themselves possible histories of the game;
formally: Ai = {a : (h, a) ∈ H}.

Problem 56 Consider a two person game of chicken in extensive form in
which one player must first decide whether to swerve and the second player
decides second. Write out the set H and the function P .

5.2.2 Defining Extensive Form Games of Incomplete
Information

To represent an extended form game with incomplete information we need
three extra items. First we add a player, N (for “nature”) to the set of
players. Second we assume that N chooses moves probabilistically rather
than strategically. This allows us to represent the possibility that when a
player takes action a, she is not sure whether this will produce one history or
another (although this may be observed once it has occurred). The second
novelty is the introduction of player ignorance about histories after they
occur–we allow for the possibility that after a sequence h, a given player
is not sure whether the sequence h or h0 has been followed. These last two
additions can be described formally as follows:

• A function c that maps from a history h in which P (h) = N into
a probability measure over AN , with all such probability measures
being independent of each other. As an example, the probability that
nature chooses a ∈ AN after history h (given that P (h) = N ) could
be written: c(a|h).

• For each player, an information partition Ii of the set of histories
that could lead to player i playing. The different cells of a player
i’s partition are collections of histories that i can not tell apart. For
example say that the set of possible histories leading up to my play is
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Hi = (h1, h2, h3, h4, h5, h6) and that my partition of Hi is Ii =[h1, h3
| h2.| h4, h5, h6], then: should h1 or h3 occur, I cannot be sure which
of these occurred (although I can tell that none of h2 or h4 − h6
occurred); if h2 occurs I will not confuse it for anything else; but if
h4, h5 or h6 occur then I can not be sure of which of them is the real
history (but I do know that it is not h1, h2 or h3). The partitions
(Ii)i∈N should have the property that if h and h0 are in the same
cell of a partition, then Ai(h) = Ai(h

0)–as otherwise if a player
knew what actions she had available to her and if different histories
resulted in different options, then the player would be able to use this
information to work out what history had occurred.

Given these definitions we can represent an extended form game of in-
complete information with:

G = hN,H,P, c, (Ii)i∈N , (%i)i∈N i or G = hN,H,P, c, (Ii)i∈N , (ui)i∈N i

5.2.3 Behavioral Strategies

In our discussion of normal form games we considered the set of all mixed
strategies over a player’s set of pure strategies. In the study extensive form
games however we make use of the idea of a “behavioral strategy”: a strat-
egy that specifies what actions a player will take at every point in the game
tree (at which she has a choice to make), whether or not that point is in fact
reached.4 A behavioral strategy may involve mixing within an information
set, but it is not necessarily equivalent to a mixed strategy.
To clarify, let’s begin with a formal definition:

Definition 57 A “behavioral strategy”, σi for player i in extensive form
game Γ is a collection of probability distributions over the options in each
of the player’s information sets, ι ∈ I.

So for example, if in a game a player has to choose between moving
Right or Left at two distinct information sets, I = {ι1, ι2}, his strategy,
σi, may contain two probability distributions, each conditional upon his
information set: σi = {σi(ι1),σi(ι2)} where σi(ιj) = {Prob(a = L|ι =
ιj), Prob(a = R|ι = ιj)}.

4 In some cases then a strategy will specify an action a(h) to be taken by player i
after some history, h, even if i’s strategy precludes the possibility that h will ever be
reached. In this sense a strategy differs from a plan of action.
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Note that sometimes pi or πi is used rather than σi to distinguish “behav-
ioral” from “mixed strategies.” The difference between the two is somewhat
subtle and is discussed in the next remark.
Note also: for all discussions of extensive form games to follow, we will

consider only behavioral strategies and define utilities directly over these
strategies.

Remark 58 In an extensive form game a “behavioral strategy” is a collec-
tion of probability measures, one for each information set reached by player
i; a “mixed strategy”is a single probability measure over the set of all pure
strategies. In games of “perfect recall”5 , mixed strategies have exactly one
behavioral strategy representation; behavioral strategies have one–but pos-
sibly more than one–mixed strategy representation.
For games of perfect recall the Nash equilibria concepts are equivalent

also. But a Nash equilibrium in behavioral strategies is not necessarily the
same as a Nash equilibrium in mixed strategies if players do not have perfect
recall.
The following nice example is an adaptation of one in Osborne and Ru-

binstein (Figure 214.1) and should help clarify the difference (if you look
at it long enough). It might also convince you that there may be interest
in studying one person games. Here it is: consider the game in Figure 5.2.
Player i has a unique information set. If he follows pure strategy “L” he
receives payoff 0 (he takes the first left). When he follows pure strategy S
he also receives payoff of 0 (missing his turn). His payoff from every mixed
strategy in this game is derived from mixing between these payoffs from his
use of pure strategies and so gives a payoff of 0 (that is, any weighted aver-
age of 0 and 0 is 0). This however is not the same as what he could achieve
by employing a behavioral strategy that involves mixing over the elements
in his information set. In this case if his strategy is to take Left with prob-
ability p each time he has a choice to make, he can expect to gain a payoff
of Pr(1− p): a payoff that is maximized with p = .5 and that produced an
expected payoff of .25.

5.2.4 Illustrating Extensive Form Games

Unless the game tree is either crystal clear or impossibly complex, draw it
out. The game tree helps in your thinking, it also helps the reader a lot,
especially readers during talks who want to get a quick overview of the

5 In games of perfect recall a player remembers past actions that he has taken, graph-
ically this means that if a player’s actions distinguish between two nodes, then those
two nodes should not be in the same information set.
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FIGURE 5.2. Memoryless man trying to get home.

game. Once you have a game tree a particular sequence h in H is just a
series of connected branches, starting at the beginning of the game tree and
moving some way down. A terminal history is any path from the beginning
to the end of the tree. The function P can be represented with a label at
each node indicating who chooses at that node. it is good practice to:

• have a hollow circle, °, at the beginning of the game tree

• have a filled circle, at each of the other nodes (including the terminal
nodes)

• have time moving in a single direction (e.g. from top to bottom, from
left to right6

• indicate the name of the player that moves at every information set

• indicate the label of the action taken by the player at every branch
leading out of every node

6Although in games with complicated information sets it is sometimes clearest to
have time moving in multiple directions so that information sets do not have to do
tricky maneuvers to avoid each other.
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• indicate the payoffs in a vector at the end of the game tree with the
payoffs ordered in the order in which the players move. If there are
complex move orderings write the names of the players beside the
payoffs.

• if players choose from a continuous set, indicate their options with a
cone

• for information sets that contain multiple nodes, envelope the nodes
inside a dotted oval; if there are just two nodes in an information set
you can simply connect them with a dotted line

To illustrate particular equilibria on a game tree:

• If pure strategies: use a thick line to mark the branches specified by
the equilibrium both on and off the equilibrium path; the thick line
may even contain an arrow.

• If there is mixing at some information sets: indicate the probability
with which each branch is played in equilibrium beside the relevant
branch

• if the solution concept requires the specification of a player’s beliefs
regarding which node within an information set she is at: indicate the
beliefs (a number between 0 and 1) with a number in square brackets
beside the node

5.3 Coalitional Games

5.3.1 Coalitional Games with non-transferable utility

To define a “coalitional game” you need, alongside N , X and (%i)i∈N
(defined over X):

• An outcome function f , that assigns elements ofX to each non-empty
subset of N .

Given this, the game is defined by:

G = hN,X, f, (%i)i∈N i

Note that in this game description there is no action set describing what
each individual does: the idea is that what goes on inside of a coalition is
unmodelled, instead it is assumed that coalitions can solve their problems
in various ways that players inside the coalition may value differently.
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5.3.2 Coalitional Games with Transferable Utility

To define a “coalitional game with transferable utility” you only
need, alongside the set of players N , a “value function,” v, that associates
a number with every subset of N . Hence the game may be written:

G = hN, vi
Note that you do not need an action space or a set of player preferences

or a game tree. The reason is that in coalitional games you can abstract
away from the individual strategies of the players and focus instead on the
maximum possible values that can be achieved by coalitions (ignoring how
they actually achieve them). Having“transferable payoffs” means that an
individual can “give” any amount of “his utility” to another player, much
like he can transfer money. In effect by assuming this you can work in
utility space and you have already captured all relevant information about
utility (since by definition players prefer more utility to less utility).
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6
What to Prove II: Making
Assumptions, Making Points

6.1 Weak Assumptions, Strong Theories

If you make the right assumptions you can prove anything. If you believe
a result is true and want to prove it, one (albeit inelegant), approach is to
make as many assumptions as you need to prove it and then chip away at
your assumptions.
Whatever approach you use, once you have a version of your result, you

then want to make sure that:

1. The assumptions you have are as weak as possible

2. Only plausible assumptions are driving the results and

3. The distance between your assumptions and your conclusions is as
great as possible

I consider these in turn.

1. Why do you want weak assumption? Let’s begin by defining what we
mean by weak and strong (relatively speaking):

Definition 59 Assumption A is stronger than Assumption B if A implies
B but B does not imply A. Proposition A is stronger than Proposition B if
A implies B but B does not imply A.
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Given these definitions you can see that: the weaker your assumptions,
the stronger your theory. Hence consider two sets of assumptions, a stronger
set As and a weaker set Aw, As → Aw. (e.g. As “John is in Manhattan”
Aw “John is in New York”; note that As → Aw but As 8 Aw). Now say
that we have the choice between two propositions, P1: As → B and P2 :
Aw → B. Which of P1 and P2 is the stronger proposition? Clearly P2 is
stronger since if P2 is true then we have both As → Aw and Aw → B and
hence As → B. But this is just what P1 says. Hence P2 → P1 Since we do
not have P1 → P2 we have that P2 is stronger than P1.

Example 60 (Preferences)

Proposition 61 Assume Players 1 and 2 have preferences over points in
R2 representable by utility functions ui(x) = −(|pi − x|)2 for i ∈ (1, 2) and
where pi ∈ R2 for i ∈ (1, 2). Then Player 1 and Player 2’s contract curve
will be a straight line.

Proposition 62 Assume Players 1 and 2 have preferences over points in
Rn representable by utility functions ui = ui(|pi − x|) for i ∈ (1, 2) where
pi ∈ Rn for i ∈ (1, 2) and u0i < 0. Then Player 1 and Player 2’s contract
curve will be a straight line.

In this example, Proposition 61 makes stronger assumptions about pref-
erences than Proposition 62. Note that ui(x) = −(|pi − x|)2 −→ ui =
ui(|pi − x|), u0i < 0; but ui(x) = −(|pi − x|)2 8 ui = ui(|pi − x|), u0i < 0.
Hence if you are willing to assume quadratic preferences, (the assump-
tion you need to make to employ Proposition 61) then you could employ
Proposition 62 to get the result. If on the other hand you are only will-
ing to assume “Euclidean preferences” (the assumption you need to make
to employ Proposition 62) then you can’t be sure that you can employ
Proposition 61. Equivalently, if Proposition 62 is true, then Proposition 61
is true, but not vice-versa.

Problem 63 Arrow’s Theorem states that there is no way, other than
through dictatorship, to aggregate a collection of rational preference profiles
into a rational preference profile that does not violate Universal Domain,
the Pareto Principle or Independence of Irrelevant Alternatives. Recall that
“rational” implies complete and transitive. Now, consider a theorem that
made the same claim as Arrow’s but that did not require individual pref-
erences to be transitive. Would this be a stronger or a weaker theorem?
Why?

Exercise 64 We defined transitivity of the weak preference relation < as
the property that if x < y and y < z then x < z. Consider a rival no-
tion of transitivity, call it q-transitivity, as the property that if x Â y and
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y Â z then x Â z. Is the assumption of q-transitivity a stronger or a weaker
assumption that the assumption of transitivity? Prove it. Does Arrow’s im-
possibility result obtain if we replace the requirement of transitivity with the
requirement of q-transitivity? Prove it.

2. Only plausible assumptions should drive your results. This does not
mean that you should not have implausible assumptions, but rather that
your key results should not depend on the implausible assumptions.
Implausible assumptions are typically needed to make models models.

The problem is that there is always, always a temptation to add more
realism into a model, sometimes by adding extra players, extra strategies,
sometimes by adding greater “realism” such as by adding uncertainty or
piling up extra subgames. You have to avoid these temptations. Models can
very quickly become unsolvable. Even if they are solvable they can quickly
become uninterpretable. Even if they are solvable and interpretable, their
central insights and lessons can quickly become obscured. And an unsolved
or uninterpretable or aimless model is not much good to anyone.1

This then is a form of the principle of parsimony: a model should be as
simple as possible in order to describe the aspect of the problem that you
care about–but no simpler ! The tricky thing is to know if your model is
“too simple.” The key test is to ask the question:

Does the exclusion of some piece of realism result in qualita-
tively different conclusions than if that piece of realism is intro-
duced?

If not, then keep it simple. If so, then the exclusion is not legitimate.2

Example 65 The median voter theorem for electoral politics assumes (a)
that candidates are office seekers and (b) that candidates know with cer-
tainty the preferences of the electorate. Both assumptions are unreason-
able, although how unreasonable they are varies across contexts. Does this
matter? Yes; at least in the following way. We can show that relaxing just
assumption (a) has no affect on the model’s results; neither does relaxing
assumption (b). Relaxing both assumptions at the same time may however
lead to divergence in the platforms selected by candidates in equilibrium
rather than convergence to the median. Hence if we are concerned with po-
litical contexts where assumptions (a) and (b) are unreasonable, then the
standard median voter model is inappropriate.

1Unless, perhaps you can prove that the problem has no solution...
2Hence Occam’s version of the principle of parsimony: if two theories explain a prob-

lem equally well, choose the simpler. The principle does not state that simpler models
are (necessarily) preferable to more complex models when the results of the two differ.
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FIGURE 6.1. Maximize the distance between your assumptions and your results.

3. Maximize the “distance” between your assumptions and your conclu-
sions. The idea is this: when you sell a model, the product people receive
is your set of conclusions and the price they pay is your set of assumptions
(that is, what they have to swallow in order to get the conclusions). If
they’re going to feel like they’ve got a good deal then they need to see a
big difference between the price they pay and the product they get. Never
present a proposition that is “true by assumption.”

In short:

• If you think your model is too complex, remove the flab. Remove
parts of the model that appear not to be doing any of the work and
check whether your results change.

• If your model is simple but you can show that it’s not too simple:
prove your results in the simple case and then show in an appendix
that the results are robust to changes in assumptions. How much goes
in to the appendix and how much in the main text will depend on
your audience.

• If your model is too simple: if feasible, write the more complex model
such that the simple model is a special case of the complex model.
You can then show how the simple model’s results are altered as a
function of the introduction of complexity.

• If in fact your problem and results are so simple that they can be
expressed clearly enough in words rather than in equations, then write
in words and expand your audience.

Problem 66 Read Chapter 22 of Rasmussen, “Shooting the Bird’s Eye.”
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6.2 Solution Concepts

After you have designed a game–specified the actors, the possible strate-
gies, the information available to them, their preferences and so on–you
will move into analyzing it. Analysis may describe actions that you might
expect individuals to take in response to particular actions by others, nor-
mative properties of the players’ behavior, the information that players
may gather over the course of a game and so on. Traditionally however a
centerpiece of your analysis will be your attempt to solve the game and
then describe the properties of the solution. To do this you need a solution
concept.
A “solution concept” is a rule for predicting how players will play a

game. More formally (loosely following Myerson) it can be described as a
mapping φ from some set of games, Γ, into some set, B, of descriptions of
admissible behaviors. For example, Γ could be the set of all finite normal
form games and B could be the set of all randomized strategy profiles.
We will see that there is a very large range of solution concepts available

to a modeller–even for the set of finite normal form games and randomized
strategy profiles. In selecting a solution concept then, modellers first need
some sense of what a “good” solution is. What makes a solution concept
good is up for grabs, but typically solution concepts should be accurate in
the sense that they select outcomes that are “reasonable” according to some
stated criterion and not identify outcomes that are not reasonable.3 After
accuracy, precision is often desired: we can say that one solution concept
is more precise than another if the predictions of the former are a subset
of the predictions of the latter; ideally the solution concept should predict
few rather than many possible outcomes. A third property, particularly of
use for empirical work, is existence–falsifying a prediction is difficult if
the solution concept does not predict anything.4 A good solution concept
should be insensitive to irrelevant information and in particular it should
not depend on the description of the problem and on the method employed
to identify the solution (some reasonable-sounding solution concepts fail
this last condition). Finally a desirable property of the solution concept
is that it be strong in the sense that it only requires weak assumptions

3These two requirements of accuracy are quite distinct: Following Myerson we say
that a solution, φ is a “lower solution” if for any element, p, of φ there exists an
environment where p is an accurate prediction. A lower solution may however fail to
identify good predictions. In contrast φ is an “upper solution” if for any, p, that is
not an element of φ there is no environment where p is an accurate prediction. Upper
solutions may include predictions that are never accurat predictions, but excludes some
class of inaccurate predictions. Finally, a solution, φ is an “exact solution” if it is both
an upper solution and a lower solution.

4As you read through the discussions on the merits and the demerits of the core as a
solution concept, a pertinent question to ask yourself is whether you buy into the idea
that existence is a desirable property.
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about human behavior. I don’t know of any theorem that says that it is
impossible to have a solution concept that satisfies all these properties, but
in any case when choosing among concepts you’ll typically have to make
trade-offs among these criteria.
In future weeks we work through a menu of possible solution concepts

and identify some of the merits and demerits of each, as well as figuring out
how to use each one. We begin with normal form games, then we consider
extensive form games and cooperative games. We hold back on a detailed
discussion of solution concepts for games where imperfect information is
an important feature until after we introduce techniques for studying these
games.

FIGURE 6.2. From The New Yorker

6.3 I’ve solved the game, what now?

Here is a small and non-exhaustive list of the kind of things that you may
want to do once you have settled on a solution concept.

1. Establish the existence of a solution to your game

2. Establish the uniqueness of the solution

3. Or, identify the number of solutions

4. Describe the types of actions / learning / coalitions that occur at the
solution

5. Characterize the efficiency properties at the solution

6. If there are inefficiencies identify the source of the inefficiencies

7. Characterize the distributive properties at the solution (how does it
compare to one that a social welfare maximizer might choose?)
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8. Compare the outcome to what would occur under different behavioral
assumptions

9. Perform “comparative statics” by describing how properties of the
solution depend on the number of players, parameters in or properties
of their utility functions, their strategy sets, information available to
them, the structure of the game tree...

10. Identify testable propositions from your model
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7
Representing Preferences: A Menu

7.1 Represenation: Preferences and Utility
Functions

In many applications it is useful to work with utility functions rather than
with preference relations. A question arises however as to whether, or to
what extent, a given utility function “represents” a preference relation.
Formally, we say that a utility function ui : X → R represents the

preference relation %i if for all outcomes x, y inX we have: ui(x) ≥ ui(y)↔
x %i y. Under what conditions is such a representation possible?
The following proposition provides one necessary condition:

Proposition 67 If a utility function ui can represent %i then %i is ratio-
nal.

Exercise 68 Prove this proposition.

Unfortunately, this proposition does not tell us whether rationality of %i
is a sufficient condition for there to be a utility function that can rep-
resent %i. In fact, there are rational preference relations that cannot be
represented by utility functions. A well-known one of these is the lexico-
graphic preference relation. Such a preference relation takes a form like
the following: Let X = R2, with typical elements (x1, x2) or (y1, y2). Then
let %i be given by x Âi y ↔ {x1 > y1 or {x1 = y1 and x2 > y2}} and
x ∼i y ↔ x = y. An example is someone who always prefers more general
theories to less general theories, no matter what the level of mathemat-
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ical complexity, but, conditional upon a given level of generality prefers
mathematically simple to mathematically complex theories.
Sufficient conditions do however exist for the problem of representing

preferences with utility functions. Here is one useful one:

Definition 69 Continuous Preferences. We say that a preference re-
lation is “continuous” if for any sequence {xn} ⊂ X that converges to a
point x in X, and sequence {yn} ⊂ X that converges to a point y in X, we
have that if xn %i yn for all elements of {xn} and {yn} then x %i y.

Proposition 70 If %i is rational and continuous then there exists a con-
tinuous utility function ui that can represent %i .

Example 71 An implication of the last proposition is that the lexicographic
preferences that we described above must not be continuous. To verify, note
that the sequence xn = (1, 1n) has the limit x = (1, 0), whereas the sequence
yn = (

n−1
n , 1) converges to y = (1, 1). In this example we have that for all

xn Âi yn, however, y Âi x.

Health Warning!: The key concern is that if all you impose is rational
preference relations, or perhaps continuous and rational preference rela-
tions, then the utility numbers that you assign to a set of outcome have
almost none of the properties that you normally assume for numbers. All
that matters is order. It is not meaningful to add two numbers such as
u(x) or u(y) together. Nor is it meaningful to compare differences such as
(u(x)− u(y)) and (u(z)− u(w)).
To see the range of possible representations of % let g be any (strictly)

monotonically increasing transformation in the sense that g(a) ≥ g(b) ↔
a ≥ b for any a, b. And let ui represent %i . Then clearly g(ui(x)) ≥
g(ui(y))↔ ui(x) ≥ ui(y)↔ x %i y. But this implies that g(u(.)) (or g ◦u)
represents %i. Hence we have that ui represents %iuniquely only up to a
strictly increasing monotonic transformation.1

7.2 Representation: Von Neumann-Morgenstern
Utility Functions

Consider now situations of risk : that is where individuals are not sure
exactly what outcome will occur but she has some priors about what is

1An advantage of this for solving problems is that if you only want to represent
rational preferences and you do not need to make assumptions about attitudes to risk
then you are free to choose any monotonically increasing function of your utility function.
Sometimes this is useful for maximization problems. For example if you find u(x) =

1

1+e−x3
difficult to work with, then just use u(x) = x. There is nothing at stake here.
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or is not likely. To capture this idea for situations in which only a finite
number of outcomes are likely we use the idea of a lottery. A lottery is
an assignment of probabilities to each of some set of states, for example
L = ((x1, p1), (x2, p2), (x3, p3), ..., (xn, pn)) is a lottery in which each state
xi occurs with probability pi. The question is: how should these lotteries
be valued?
The expected utility hypothesis—that utility of a lotteries is valued as the

expected utility from the lottery is a cornerstone for analyzing choice in
these situations. The hypothesis states that we can represent an individual’s
preferences over the objects in X and lotteries over objects in X with an
expected utility function u that is “linear in probabilities.” Informally:

u(((x1, p1), (x2, p2), (x3, p3), ..., (xn, pn))) =
nX
i=1

piu(x1)

The Starmer article was intended to put the hegemony of this approach
into question. In fact the hypothesis has weak theoretical foundations and
very weak empirical support. Nonetheless it is attractive because (1) it
provides a tractable way to evaluate risky choices and (b) it can be easily
derived from innocuous seeming axioms.
Having stated the hypothesis informally, let’s now derive it from a set of

axioms (the treatment below follows that found in Luce and Raiffa 1957).

Assumptions:

1. (Rationality) The preference relation% over elements inX is rational.
The preference relation over lotteries of elements in X is also rational.

2. (Reduction of Compound Lotteries) A compound lottery (a lottery
over lotteries over elements inX) is equivalent to a simple lottery over
elements in X with probabilities computed according to the ordinary
probability calculus.

3. (Continuity) For any outcome in X a player is indifferent between
that outcome and some lottery involving the player’s most preferred
and least preferred outcomes.

4. (Substitutability) If the player is indifferent between an outcome x
and a lottery L then L may be substituted for x in any lottery in-
volving X.

5. (Monotonicity) If a the player prefers x to y then given two lotteries
between x and y he prefers the one that assigns the higher probability
to x.



70 7. Representing Preferences: A Menu

Proposition 72 If Assumptions 1-5 hold then there are numbers ui as-
sociated with each outcome in X such that for any any pair of lotter-
ies L = ((x1, p1), (x2, p2), ..., (xn, pn)) and M = ((x1, q1), (x2, q2), ...,
(xn, qn)): L %i M ↔

Pn
j=1 pjuj ≥

Pn
j=1 qjuj

Proof. Without loss of generality assume that x1 is i’s most preferred
option and xn is player i’s least preferred option. Consider the lottery
L = ((x1, p1), (x2, p2), ..., (xn, pn)) (note we can also write this more
compactly as ((xj , pj))j=1,2...,n).
From continuity we have that for each xj , we have that player i is

indifferent between xj and some lottery that awards x1 with probability uj
and xn with probability 1− uj .
From substitutability we have that i is indifferent between a lottery, L,

and one in which the simple elements of L are replaced with these lotteries
over x1 and xn Hence:

((xj , pj))j=1,2...,n ∼i (([(x1, uj), (xn, 1− uj)], pj))j=1,2...,n

By reducing this compound lottery we have:

((xj , pj))j=1,2...,n ∼i
h
(x1,

X
pjuj), (xn, 1−

X
pjuj)

i
From rationality we then have:

((xj , pj))j=1,2...,n % i((xj , qj))j=1,2...,n

↔h
(x1,

X
pjuj), (xn, 1−

X
pjuj)

i
% i

h
(x1,

X
qjuj), (xn, 1−

X
qjuj)

i
Finally from monotonicity we have that since x1 %i xn :X

pjuj ≥
X

qjuj

↔h
(x1,

X
pjuj), (xn, 1−

X
pjuj)

i
% i

h
(x1,

X
qjuj), (xn, 1−

X
qjuj)

i
Combining these gives us that there exist numbers (uj)j=1,2...,n such

that: X
pjuj ≥

X
qjuj

↔
((xj , pj))j=1,2...,n % i((xj , qj))j=1,2...,n

And this proves the proposition.

In applications, utility functions of this form are assumed directly rather
than deduced from axioms. The theoretical justification for them nonethe-
less relies on the plausibility of the axioms (each of which is worth thinking
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about). Utility functions with this property are then typically termed Von
Neumann-Morgenstern utility functions or Bernoulli utility func-
tions. We will now see why such utility functions are useful in evaluating
a player’s attitude to risk.

7.3 Utility over a Single Dimension

7.3.1 Attitudes to Risk

For some problems, a von Neumann-Morgenstern utility function provides
a measure of an individual’s attitude to risk.
Assume that a player has a continuous utility function u over X ⊂ R.

Consider now a lottery given by L = ((x1, p), (x2, 1− p)). From the above
we have that the individual’s utility for this lottery is given by: u(L) =
p.u(x1)+(1−p).u(x2). And from the continuity of u (and the intermediate
value theorem) we have that there must exist some point x∗ ∈ X such
that u(x∗) = p.u(x1) + (1 − p)u(x2) (Prove this!). That is, the individual
is indifferent between x∗ and a lottery between x1 and x2. We call x∗ the
“certainty equivalent” of the lottery L.
The value of the certainty equivalent tells us something about the player’s

attitude to risk. In particular if x∗ < px1 + (1 − p)x2 then in some sense
the individual is “risk averse”–they prefer a sure thing that has a value
lower than the expectation of the lottery.
More generally we define risk aversion, risk seekingness and risk neutral-

ity as follows::

Definition 73 An individual with utility function u is risk averse if for
any p ∈ (0, 1) and outcomes x1, x2 ∈ X we have u(px1 + (1 − p)x2) >
pu(x1)+(1−p)u(x2). An individual with utility function u is risk seeking
if for any p ∈ (0, 1) and outcomes x1, x2 ∈ X we have u(px1+(1−p)x2) <
pu(x1)+(1−p)u(x2). An individual with utility function u is risk neutral
if for any p ∈ (0, 1) and outcomes x1, x2 ∈ X we have u(px1+(1−p)x2) =
pu(x1) + (1− p)u(x2).

Key result: If you refer back to the definitions of a concave and convex
function from the beginning you should be able to convince yourself easily
that under the assumption of von Neumann-Morgenstern utility the state-
ments “Player i has a (strictly) concave utility function” and “Player i is
risk averse” are equivalent. Similarly the statement “Player i has a (strictly)
convex utility function” and “Player i is risk seeking are equivalent.” Risk
neutrality is equivalent to possessing a linear utility function.
Hence information on the concavity or convexity of a utility function

is sufficient information to make qualitative statement regarding the risk
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attitudes of an individual. How though could one begin to quantify an
individual’s degree of risk aversion / risk seekingness?
One approach is to calculate the difference, px1+(1−p)x2−x∗, between

the expectation of a lottery and the quantity of a sure thing that the indi-
vidual values equivalently. This difference is termed the “risk premium”;
if positive it means that an individual would forgo some of the expected
value of a lottery in order to receive a sure thing instead.
A useful utility function that we will use at a later stage has particularly

interesting properties in terms of its implications for risk premiums. The
so-called constant absolute risk aversion utility function is given by:

u(x) = −e−λ(x)

Among other useful properties, this utility function is unique (up to a
positive affine transformation) in producing a risk premium that is inde-
pendent of wealth in the following sense: for any p, x1, x2 and w, the risk
premium for the lottery L(w) = ((x1+w, p), (x2+w, 1−p)) is independent
of w.

Problem 74 Prove that if a player has utility function u(x) = −e−λ(x)
then her risk premium for the lottery L(w) = ((x1 + w, p), (x2 + w, 1− p))
is independent of w.

7.3.2 Functional Forms

For solving particular problems choosing the constant absolute risk aversion
utility function (or some other functional form) can be a useful way to
proceed. The aim however should be to make the assumptions weaker once
you are convinced that your result is true. To help guide you, here is a listing
of possible assumptions you might want to impose on utility functions In
the case of utility over outcomes that can be arrayed on a single dimension
(roughly ordered from weaker to stronger )

• Smoothness (that is, u is differentiable)

• Single peakedness (if X is the real line then single peakedness
obtains if all players have quasiconcave utility: for any point x ∈ X
the set of points that i prefers to x is convex).

• Monotonicity (the first derivative) for example u0(x) > 0; or u0(x) ≥
0 for x ≥ x∗ and u0(x) ≤ 0 for x ≤ x∗.

• Attitudes to risk (the second derivative), for example u00(x) < 0.;

• Symmetry (a strong assumption): there exists a point x such that
for all y ∈ X, u(x+ y) = u(x− y).
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• Functions with free parameters: One common family of func-
tional forms over a single dimension is the CRRA (constant relative
risk aversion) utility function, given by u(x) = x1−a

1−a , for a 6= 1. The
name follows from the fact that the coefficient of relative risk aversion
(given by xu

00
u0 ) is in this case constant: (x

u00
u0 = x

−ax−a−1
x−a = −a). A

simpler function with similar properties is given by u(x) = xα (this
may be increasing, decreasing, concave or convex, but still belongs
to a restricted family of functional forms; what is it’s coefficient of
relative risk aversion?)

• Fully specified functional forms. Most restrictive are functional
forms with fully specified parameters. e.g. For example the CRRA for
a = 0 is simply u(x) = x; in the limit as α approaches 1, it is given
by u(x) = ln(x). Another function that is often easy to work with is
the case where α = .5, in which case u(x) = 2

√
x.

7.4 Preferences over many Dimensions With No
Satiation

In the last section we considered utility functions to represent preferences
over single dimensional outcome spaces. Broadly analogous considerations
are germane for situations in which outcomes are values across multiple di-
mensions. Commonly such situations are modelled either for situations in
which individuals have “spatial” preferences, discussed below, or for prob-
lems with “economist” preferences in which player utilities are increasing,
without limit, in multiple dimensions, discussed now.
A particularly useful family of utility functions is given by the Constant

Elasticity of Substitution family.
The Constant Elasticity of Substitution utility function takes the follow-

ing form:

u(x1, x2, x3, ...) = (α1x
θ
1 + α2x

θ
2 + α3x

θ
3...)

1
θ for θ ∈ [−∞, 0) ∪ (0, 1]

or more compactly:

u(x) =
³X

i
αix

θ
i

´ 1
θ

for θ ∈ [−∞, 0) ∪ (0, 1] (7.1)

Note that the function is not defined for θ = 0; in this case though it is
possible to define the function in the limit as θ tends towards 0. Doing so
(this requires using l’Hôpital’s rule) we find that

u(x|θ = 0) = xα11 xα22 xα33 ... (7.2)

This is the case of unit elasticity of substitution, also known as the
Cobb-Douglas function. Applying a monotonic transformation to this
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utility we can see that the following function is also Cobb-Douglas: u(x) =
α1 ln(x1) + α2 ln(x2) + ...
The other limiting cases are also interesting:

u(x|θ = 1) = α1x1 + α2x2 + α3x3... (7.3)

u(x|θ = −∞) = min(α1x1,α2x2,α3x3...) (7.4)

From this we can see that three seemingly distinct approaches to welfare
can be captured by the CES function: if we set the weights equal to each
other, αi = αj and think of the variables x1, x2, x3, ... as representing the
utility of individuals 1, 2, 3, ... then a Utilitarian welfare maximize would
try to maximize equation 7.3; a Rawlsian would attempt to maximize
equation 7.4; while someone implementing Nash’s axioms for a bargaining
solution (see below) would maximize equation 7.2.

The difference between these three functions (and more generally be-
tween different types of CES functions) is the degree to which you are
willing to trade off loses on one dimension for gains on another. Utilitari-
ans are perfectly willing to do this. The Nash product also does it but is
more conservative, Rawlsians refuse to do it and focus only on the weakest
link.
Such a willingness to trade across dimensions is referred to simply as the

elasticity of substitution, described by Hicks (1932) as “a measure of the
ease with which the varying factor can be substituted for others.” The elas-
ticity of substitution can be defined for any differentiable utility function
as follows:

²i,j =
d
³
xi
xj

´
d

µ
∂u
∂xj
∂u
∂xi

¶ ∂u
∂xj
∂u
∂xi

xj
xi

To make sense of this awkward expression, we can note that it can be
interpreted as 2 the percentage change in the amount of xi (relative to xj)
that corresponds to a given percentage change in the curve of the utility
function around some point xi, xj . For a more economic interpretation, it
is useful to think of prices that can be associated with the variables xi; if
the price pi reflects the marginal utility of xi, as is the case whenever an
individual is purchasing the optimal amount of x for a given budget, then

this expression can be written: ²i,j =
d
³
xi
xj

´
d
³
pj
pi

´ pj
pi

xj
xi
=

d
³
xi
xj

´
/
xi
xj

d
³
pj
pi

´
/
pj
pi

=
d ln(

xi
xj
)

d ln(
pj
pi
)
=

2Note:
d

µ
xi
xj

¶
d

⎛⎝ ∂u
∂xj
∂u
∂xi

⎞⎠
∂u
∂xj
∂u
∂xi

xj
xi
=

d

µ
xi
xj

¶
d

µ
dxi
∂xj

¶ dxi
dxj

xj
xi
=

d

µ
ln

µ
xi
xj

¶¶
d

µ
ln

µ
dxi
∂xj

¶¶
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−
d ln(

xi
xj
)

d ln(
pi
pj
)
. Hence we see that the elasticity is the percentage reduction in

the purchase of xi, relative to xj , for a given percentage rise in the price
of xi (again, relative to the price of xj).

To see why the CES is called the CES, note that ²i,j =
d
³
xi
xj

´
d

Ã ∂u
∂xj
∂u
∂xi

! ∂u
∂xj
∂u
∂xi

xj
xi
=

1
1−θ , which is independent of all the αi terms as well as the particular values
of the variables xi.3

Note that with unit elasticity (Cobb-Douglas), if the price of a good
increases by a small percentage, then the quantity consumed goes down
by the same percentage, with the result that the total amount spent on
the good does not change. Hence, as the price of one good changes, the
demand for another good is unaffected. In fact, with Cobb-Douglas, the
total amount spent on a good is just a share of the total budget (the share
spent on good i is given by αi/

P
j αj) and is independent of the prices of

the good. This feature often simplifies the mathematics greatly but it may
be substantively unreasonable.

7.5 Preferences in the Spatial Theory

In most treatments of the spatial theory of politics, and unlike economic
models, players are generally assumed to have some point of “global satiation”–
a set of policies that they would like to see enacted were they a policy dic-
tator, alternatively referred to as an “ideal point” or a “bliss point.” The
existence of an ideal point could reflect fundamental disagreements about
what types of policies are good. Or they could reflect the way different
individuals make trade-offs in situations where they can not get the best
of everything. Given the ideal point, the value of different policy options
declines as you move “away” from the ideal point of a player.4

3To get this result note that: ∂u
∂xi

= αix
θ−1
i (α1xθ1 + ... + αix

θ
i + ...)

1−θ
θ and

hence:
∂u
∂xj
∂u
∂xi

=
αj
αi

³
xi
xj

´1−θ
. Then since xi

xj
=

µ∙
αj
αi

³
xi
xj

´1−θ¸ αi
αj

¶ 1
1−θ

, it is easy

to see that
d

µ
xi
xj

¶
d

⎛⎝ ∂u
∂xj
∂u
∂xi

⎞⎠ = 1
1−θ

αi
αj

µµ
αj
αi

³
xi
xj

´1−θ¶ αi
αj

¶ 1
1−θ−1

= 1
1−θ

αi
αj

³
xi
xj

´θ
. Hence

d

µ
xi
xj

¶
d

⎛⎝ ∂u
∂xj
∂u
∂xi

⎞⎠
∂u
∂xj
∂u
∂xi

xj
xi
=

µ
1

1−θ
αi
αj

³
xi
xj

´θ¶µ αj
αi

³
xi
xj

´1−θ¶ xj
xi
= 1

1−θ .

4For example Ordeshook claims: “The idea of spatial preferences, of representing the
set of feasible alternatives as a subset of an m-dimensional Euclidean space, of labelling
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However there are many different ways in which ideal point information
can be introduced; furthermore, some models though strongly “spatial” in
feel do not explicitly require the notion of an ideal point. Also, there are
many ways to operationalize the notion of moving “away” from an ideal–
couldn’t for example the “awayness” relation be defined in terms of utility
losses, however utility is defined, rather than in terms of some arbitrary
metric? Such considerations makes it difficult to know what makes a spatial
model spatial. While I don’t know of any generally accepted definition
of what constitutes the spatial model, I think the following distinction is
useful.
In a “weakly spatial model” the set of outcomes, X, can be mathemat-

ically represented as a space, for example a vector space, a smooth man-
ifold or, most commonly, a Euclidean space. Agents can be assumed to
have (complete and transitive) rational preference orderings–given by the
binary relation %i–over all pairs of elements in this set. But it is not re-
quired that agents cognitively perceive the relative utilities of outcomes in
terms of relative distances in the underlying mathematical space. Agent
preferences are characterized by an abstract agent-specific utility function
u : W → R1 with the property that, for any pair of outcomes y, y0, we
have y %i y0 ⇔ ui(y) ≥ ui(y

0). In this sense the preferences over many
dimensions with no satiation discussed above can be treated formally as
weakly spatial models. But weakly spatial models also allow for the possi-
bility that players have ideal points – points of global satiation. For many
these are the hallmarks of any spatial model, but it is important to note
that while they may exist in weakly spatial models, these ideal points do
not necessarily have a privileged position and do not have to be specified
as a part of the utility function.
In a “strongly spatial” model, the set of outcomes is characterized as

being located in a space, but human agents’ evaluations of these same
outcomes are also assumed to be “spatial”. This implies that each agent
locates the set of outcomes, as well as his/her most-preferred outcome
(ideal point) xi, in a cognitive space and uses some distance measure
di(., .) defined over the entire space5, to characterize the relative util-
ity of outcomes. This means that, given preference relation %i, we have

the dimensions ‘issues,’ of assuming that people (legislators or voters) have an ideal
policy on each issue, and of supposing that each person’s preference (utility) decreases
as we move away from his or her m-dimensional ideal policy, is now commonplace and
broadly accepted as a legitimate basis for modelling electorates and parliaments.”

5A distance measure is a function d : W ×W → R1 that has the properties that for
points a,b, and c in W :

1. d(a, b) = 0 ⇔ a = b

2. d(a, b) = d(b, a)

3. d(a, b) + d(b, c) ≥ d(a, c)
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y %i y0 ⇔ di(xi, y) ≤ di(xi, y
0). Commonly, these preferences are repre-

sented by an agent specific utility function u : W → R1 with the property
that for any two points y, y0 we have y %i y0 ⇔ ui(y) ≥ ui(y0) where ui(.)
is itself a composition of a loss function f and the distance function di;
hence, ui(y) = fi(di(xi, y)).
The models in McKelvey and Schofield (1986, 1987), generating the chaos

results, are weakly spatial models. Most spatial models of party competition
in the classic Downsian tradition are strongly spatial, in our sense, since
they assume each voter to evaluate the set of potential outcomes in terms of
each potential outcome’s relative “closeness” to the voter’s ideal point. The
class of strongly spatial models extends, for essentially the same reason, to
spatial models of probabilistic voting, with or without valence parameters
(e.g. Groseclose 2001; Schofield, 2003, 2004). A useful rule of thumb is that
models that require the notion of an agent “ideal point” are strongly spatial
models. This is because the distance between the agent ideal point and each
element in the set of potential outcomes typically enters as an argument in
the agent’s utility schedule.6

7.5.1 Strongly Spatial Models

I now consider some of the more common ways of representing preferences in
spatial games. The listing that follows is ordered from strongest assumption
to weakest assumption. In each case the stronger assumption implies the
weaker assumption.

Linear or Quadratic Utility Functions

Perhaps the most restrictive of utility functions used in the spatial model
is given by u(x|p) = −(|x− pi|)2 or sometimes simply u(x|p) = −|x− pi|.
While reasonable for a first cut and highly tractable as well as popular,
these utility functions will put severe limitations on the generality of your
results.

Euclidean Preferences

The class of Euclidean preferences corresponds to the family of utility func-
tions for which the utility of a point x, is a decreasing function of the
distance between x and some player ideal point pi. Hence fi(|x − pi|) ≥
fi(|y− pi|)↔ x %i y for some strictly decreasing function fi. A number of
functions that do the trick are graphically represented in Figure 7.1.

6For more on this see Humphreys and Laver. 2005. “Spatial Models, Cognitive Metrics
and Majority Voting Equilibria”
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FIGURE 7.1. Three Representations of Euclidean Preferences

The figure highlights the point that many different functional forms may
yield Euclidean preferences, and that the assumption of Euclidean prefer-
ences says nothing about the curvature of the utility function. Herein some
other useful facts regarding Euclidean preferences:

• Indifference curves are circles (in R2) or spheres.

• Contract curves are straight lines.

• More generally, the Pareto Set of a set of players is the convex hull
of the ideal points of the group’s ideal points.

• If there is an odd number of players then you can identify “median
hyperplanes”–planes with the property that half the player ideal
points are on or to one side of the plane and half the ideal points are
on or to the other side. If a point, x, is not on a median hyperplane
then there is another point, y, (that is on the plane) that a majority
prefers to x.

Problem 75 If n players have Euclidean preferences, then the contract
curves between each pair form a straight line. Is this also true if n players
have other-regarding preferences in a distributive game, representable by a
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Cobb-Douglas utility function over an n− 1 dimensional simplex with non-
zero exponents? (That is, let utilities be of the form ui(x1, x2, ..., xi, ..., xn) =

x
αi1
1 , x

αi2
2 , ..., x

αii
i , ..., x

αin
n where the exponent αij captures the weight that player

i places on the allocation of x to player j; and where each xi is positive,
and

P
xi = 1.) Prove one way or the other.

The notion of a “median hyperplane” is especially useful in studying the
geometry of majority rule. By “median hyperplane” we mean a plane with
the property that for each side of the plane there lies a majority of ideal
points on or to that side of it; in other words, if M(v, a) = {x|x.v = a}
is a median plane, there is a majority of points in the (closed) upper half
space M+ = {x|x.v ≥ a}, and a majority of points in the (closed) lower
half space M− = {x|x.v ≤ a}.
Any majority rule equilibrium (core point) must lie on every median

hyperplane. To see this, and to get a sense of how to work with such objects
consider the following claim:

Claim 76 Assume all players have Euclidean preferences over points in
Rn. Then if a point, x, does not lie on a median line (hyperplane) then
some point on the line (hyperplane) will be preferred by some majority of
players.

Proof. Consider a median hyperplane M(v, a) and some point x with
x ∈M−. Now consider a rival point x∗ = x+ (a− x.v)v. Notice that with
v an element of the unit sphere (that is v.v = 1) x∗ is in M (note also that
since x ∈M−, x.v < a and (a− x.v > 0)). Also, for any point p:
|p− x∗|2 = (p− x∗).(p− x∗)

= (p− x).(p− x) + (a− x.v)(a− x.v)v.v − 2(a− x.v)(p− x).v
= |p− x|2 + (a− x.v)((a− p.v) + (x.v − p.v))

But for p ∈M+, (a−x.v) > 0, (a−p.v) ≤ 0, and so (x.v−p.v) < 0. This
implies (a− x.v)((a− p.v) + (x.v − p.v)) < 0 and hence |p− x∗| < |p− x|.
Hence for any player i with ideal point p ∈ M+, x∗ Âi x. Since there is a
majority of players from group Gj with ideals in M+ we have x∗ ÂGj x.

Generalized Euclidean Preferences

A somewhat more general class of utility functions for spatial games is
generated by a metric that may place different weights on different di-
mensions and that may allow for non-separability across dimensions. A
standard functional form used is the family of utility functions for which
the utility of a point x, is a decreasing function of (x−pi)TZ(x−pi).where
(x − pi)T denotes the transpose of the vector (x − pi) and Z is any sym-
metric n × n positive definite matrix. Hence fi((x − pi)TZ(x − pi)) ≥
fi((y − pi)TZ(y − pi)) ↔ x %i y for some strictly decreasing function fi.
Euclidean preferences are given by the special case where Z is the identity
matrix.
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Again a number of functions with different curvatures will work. In the
case of generalized Euclidean preferences however, indifference curves are
ellipses and contract curves curve. The representation can be useful for
studying the effects of differences in the relative salience of different di-
mensions to different players.

General strongly spatial utilities

Again somewhat more general assume that a player has an ideal point pi

and that preferences %i can be represented by a utility function u(x) =
fi(||x − pi||) with fi(||x − pi||) ≥ fi(||y − pi||) ↔ x %i y for some strictly
decreasing function fi and where ||.|| is a norm. Most commonly we think
of the norm as being a vector norm7 or Minkowski metric denoted by ||x||θ
for θ = 1, 2, 3, ... where:

||x||θ =
³X

i
|xi|θ

´ 1
θ

for θ ∈ {1, 2, 3, ...} (7.5)

Commonly a ||x||θ is referred to as a Lθ norm (or commonly Lp norm).
Note that using the ||x||1 metric, the distance between two points, a and b
is simply ||a− b||1 =

P
i |ai − bi|, that is, the sum of the distances on each

dimension. This is in fact the city-block norm or Manhattan norm (based
on the idea that to walk from a to b in a city you can’t cut diagonally but
have to add up the distances walked going north to south and the distances
walked going east to west). Preferences based on this metric are sometimes
called City-block preferences. The ||x||2 metric, or L2 norm, is simply the
Euclidean metric and so preferences based on this distance function are
simply Euclidean preferences. For higher values of θ there is an increasing
unwillingness to trade off across dimensions. For ||x||∞, sometimes called
the Tschebyscheff (Chebyshev) norm, or L∞, the distance of a vector is
given by the the length of the longest component of the vector. 8 For an
illustration of these norms see figure 7.2. For any of these weights can be
readily attached to any dimension and various rotations of the space can
be introduced.

7A vector norm associates a number with each vector, subject to:

• ||a|| ≥ 0 and ||a|| = 0 iff a = 0.
• ||ka|| = ||k|| × ||a|| for any scalar k (in particular this implies that for norms for
which ||− 1|| = ||1||, ||a|| = ||− a||.

• ||a||+ ||b|| ≤ ||a+ b||
8There is then an evident analogy between the family of preferences based on

Minkowski norms and the family of CES preferences given in Equation 7.1. For θ = 1, in
both cases tradeoffs along each dimension take place along a line; there is perfect sub-
stitution. At the opposite extreme we have ||x||∞ = max(|xi|), just as for CES utility
we saw u(x|θ = −∞) = min(αixi).
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A slightly less general family of strongly spatial utilities requires the
“triangle inequality” to hold strictly: hence for any a, b 6= 0 we require
that ||a|| + ||b|| = ||a + b|| only if there exist non negative λ1, λ2 not
both 0 for which λ1a = λ2b. This excludes the L1 and L∞ norms (see for
example McKelvey and Wendell, “Voting Equilibria in Multidimensional
Choice Spaces”).

Lp i j, p,( ) i 50−( )p j 50−( )p+⎡⎣ ⎤⎦

1

p
−:=

i 0 100..:= j 0 100..:=

L1i j, Lp i j, 1,( ):= L2i j, Lp i j, 2,( ):= L12i j, Lp i j, 12,( ):=

L1 L2, L12,

FIGURE 7.2. Minkowski metrics: Utility based on L1, L2 and L12 norms.

7.5.2 Weakly Spatial Models

Weakly spatial models do not require information about the metrics agents
use to measure the space, nor do they require the existence of an ideal point.
All that is required is that, given the way that the modeler has chosen to
represent the space, we can describe the agent’s preferences over points in
the space.
Again there can be great variation in the generality of the representa-

tion of player preferences. Here I consider two degrees of generality: Linear
preferences and convex preferences.
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Linear Preferences

Following Caplin and Nalebuff (1997) we say that players have “linear
preferences” if each player has a “type” pi where pi ∈ Rn and the player’s
preferences can be represented by a utility function over points in x that
takes the form:

u(x, pi) =
nX
j=1

pijfj(x) + g(x) (7.6)

in which each function f1, f2, ..., fn and g map from X to R1.
While “linear” sounds like a narrow class of preferences, the freedom

to choose the g and fj functions actually allows this class of functions to
incorporate a wide variety of possibilities. Note importantly that the g and
fj functions are not player specific; the player specific part is captured by
pi.
The class of linear preferences includes some strongly spatial preferences

such as Euclidean preferences as well as some “economic preferences” such
as the CES and Cobb-Douglas preferences described above. To see that
Euclidean preferences fall within this family note that if preferences can be
represented by any utility function they can be represented by the function
u(x, pi) = −|x− pi|2 and also by the function u(x, pi) = −|x− pi|2 + pi.pi
(where we simply add a player specific constant (that does not depend on
x) onto a player’s utility). In this case, multiplying out we have u(x, pi) =
−x.x + pi.x. Defining fi(x) = x and g(x) = −x.x we have u(x, pi) =Pn

j=1 p
i
jfj(x) + g(x).

Problem 77 Convince yourself that CES and Cobb-Douglas utility func-
tions satisfy the form in Equation 7.6.

Convex Preferences

More generally (including all the linear cases and more) assume that pref-
erences are convex. A player has convex preferences if the set of points that
he prefers to any given point x is a convex set. Often convex preferences
are represented simply by quasiconcave utility functions (quasiconcave util-
ity functions imply convex preferences by definition). Formally: for any x,
y ∈ X, x 6= y, y %i x implies λx+ (1− λ)y Âi x for any λ ∈ (0, 1).
Strict convexity, along with completeness, consistency (transitivity) and

continuity are collectively referred to as the “four Cs” . Over a convex and
compact outcome space, these are enough to generate a unique ideal point.

Problem 78 If the set of alternatives is convex and compact then “the
four Cs” guarantee the existence of a unique “ideal point.” Prove it.
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7.6 Intertemporal Preferences

Representing a player’s preference over periods of time presents special
problems. The key problem is that we may need to find an expression for
how an individual at a single time point evaluates outcomes that have
effects over multiple time periods. The problem goes to the philosophy of
identity. If an individual only exists at a given point in time should she
care about consumption in future periods or only with the present? That
is, can we expect her to be “altruistic” with respect to her future selves?
And if so, how can we write an expression for her altruistic evaluation of
the welfare of all her future selves...

7.6.1 The Discounted Utility Model

By far the most common approach to the problem is to employ the dis-
counted utility (DU) model.
The DU model attempts to disaggregate a person’s utility over a collec-

tion of payoffs, delivered over time, into two parts: a time independent in-
stantaneous utility function and a discount function, multiplied together in
each period of time and added up over time, that is U((x1, t1), (x2, t2)..., (xs, ts)) =Ps

i=1 u(xi)D(ti).
In practice the discount function is given by the functionD(ti) = 1

(1+r)t =

δt, in which r is the “discount rate” (corresponding, for economists at
least, to the interest rate) and δ = 1

1+r is the “discount factor” (used
more often by political scientists and corresponding, under different in-
terpretations to the share of the pie left over after a given period or to
the probability of survival into the next period). Virtually all models of in-
tertemporal choice in political science employ the DU model. Unfortunately
however the model has very shaky theoretical and empirical support.9

To get a sense of the restrictions imposed by the DU model, note that
the model implies:

• Utility Independence: Hence preferences over the ordering or pat-
tern of instantaneous utility packets are excluded except insofar as
they affect the discounted summation. In fact, studies show that peo-
ple seem to prefer increasing sequences to decreasing sequences.

• Consumption independence: Complementarity of goods over time
is excluded. Hence the amount I eat for lunch, or what I eat, should
not affect my preferences for what I eat for dinner.

9For more on this read: Frederick, S., G. Loewenstein and T. O’Donoghue (2002),
“Time Discounting: A Critical Review,” Journal of Economic Literature, 40, 351-401;
www.iies.su.se/nobel/papers/intertemporal_review_final_2.PDF
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• Time invariant instantaneous utility functions

• Time invariant discount functions: hence if I prefer a dollar to-
day to 2 dollars tomorrow, that means that given a choice between
receiving a dollar in one year and two dollars in a year and a day,
I’d go for a dollar in a year over 2 in a year and a day. If that’s not
true for you then you exhibit “intertemporal preference reversals”–a
characteristic commonly revealed in the study of humans and pigeons.

• Invariance of time preference across all forms of consump-
tion. In fact though gains appear to be discounted more than losses
small objects appear to be discounted more than large objects.

• Present-bias. The DU model typically assumes that δ < 1. But
why?

7.6.2 Representing time preferences in a prize-time space.

In some instances, notably bargaining environments, we are concerned not
with aggregating utilities over consumption streams but in evaluating the
utility of a good received at a given period in time. In this context we
represent the preference of individuals over pairs in “prize-time space”–
that is, the product X×T of a time and product space with typical element
(x, t), representing the delivery of prize x in time t.
It can be shown that if the following conditions hold, then an individual’s

preferences may be represented with an exponential discount rate δ and
utility function u such that (x, t) % (y, s) ⇔ δtu(x) ≥ δsu(y):

1. Time is valuable: Let r, s and t be elements of T with s > t and let
D denote some object in X × T that is least preferred by i: that is
D ∈ {(x, t) ∈ X × T | /∃(y, r) ∈ X × T : (x, t) Âi (y, r)}. Then: for all
x ∈ X, (x, t) %i (x, s), and (x, t) Âi (x, s) if (x, t) Âi D.

2. Preferences are stationary: (x, t) %i (y, t + 1) ↔ (x, 0) %i (y, 1) and
(x, t) %i (y, t)↔ (x, 0) %i (y, 0).

3. Preferences are continuous. A preference relation is “continuous” if
for any sequence {xn} ⊂ X that converges to a point x in X, and
sequence {yn} ⊂ X that converges to a point y in X, we have that
if (xn, t) %i (yn, s) for all elements of {xn} and {yn} then (x, t) %i
(y, s)). Note this is the same as above but with added references to
elements of T .
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(see Osborne and Rubinstein 7.2 and Fishburn, P. and A. Rubinstein.
1982. “Time Preference,” International Economic Review, 23, 677-694; On-
line at JSTOR ).10

Importantly however, the fact that an individual’s preferences may be
represented by a utility function and discount factor does not mean that we
can endow the discount factor with an absolute meaning. In particular we
can not make claims of the form: “Player i with a discount factor of δi = .5
is more patient than player j with a discount rate of δj = .25.” Instead, to
interpret the implications of the discount factor for time preferences you
first have to specify a utility function to represent a player’s preferences.
Indeed, if a player’s preferences, %, can be represented by: δtu(x) in

the sense that (x, t) % (y, s) ⇔ δtu(x) ≥ δsu(y) then they can also be

represented by δ̃
t
ũ(x) where ũ(x) = [u(x)]

ln(δ̃)
ln δ , and the redefined discount

rate δ̃
t
can be anything between 0 and 1. To see this, use the fact that

a
ln b
lna = b to note that:

δtu(xt) ≥ δsu(ys)

↔ δt
ln(δ̃)
ln δ [u(xt)]

ln(δ̃)
ln δ ≥ δs

ln(δ̃)
ln δ [u(ys)]

ln(δ̃)
ln δ

↔ δ
ln(δ̃t)
ln δ [u(xt)]

ln(δ̃)
ln δ ≥ δ

ln(δ̃s)
ln δ [u(ys)]

ln(δ̃)
ln δ

↔ δ̃
t
[u(xt)]

ln(δ̃)
ln δ ≥ δ̃

s
[u(ys)]

ln(δ̃)
ln δ

Hence if (x, t) % (y, s) ⇔ δtu(x) ≥ δsu(y) is what we mean by the
“representation of preferences” then we are free to choose any discount
rate we like in order to represent a given individual’s preferences.

Note however that although we have δtu(xt) ≥ δsu(ys)↔ δ̃
t
[u(xt)]

ln(δ̃)
ln δ ≥

δ̃
s
[u(ys)]

ln(δ̃)
ln δ it does not follow that

Pt
s=0 δ

su(xs) ≥
Pr

s=0 δ
su(ys) if and

only if
Pt
s=0 δ̃

s
[u(xs)]

ln(δ̃)
ln δ ≥

Pr
s=0 δ̃

s
[u(xs)]

ln(δ̃)
ln δ .11

10For really recent work on this, see: Efe A. Oky and Yusufcan Masatliogluz,
2003. A General Theory of Time Preferences: http://home.nyu.edu/~eo1/Papers-
PDF/Timepreference1.pdf
11The problem is that

Pt
s=0 δ

su(xs) represents a valuation of a t-tuple of timed
outcomes. For a 2-period counterexample consider the case where u(x) = x, δ = .5;
x0 = 1, x1 = 1, y0 = 0, y1 = 3. In this case:

P1
s=0 δ

su(xs) = 1.5 =
P1
s=0 δ

su(ys). But

if we consider δ̃ = .25 and ũ(x) = [x]
ln(.25)
ln .5 = x2 we have

P1
s=0 δ̃

s
ũ(xs) = .25 < 2.25 =P1

s=0 δ̃
s
ũ(xs).
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7.6.3 Alternatives to the DU Model

Alternatives now include:

• Hyperbolic discounting. The idea behind models with hyper-
bolic discounting is that discount factors are likely to rise over time.
A simple way to model this is to assume that instead of D(t) = 1

(1+r)t

we have D(t) =
© 1 if t=0

β

(1+r)t
if t>0 . Such functional forms can lead to

interesting predictions of intertemporal inconsistencies in an individ-
ual’s choices and are used to explain over-consumption and procras-
tination.... (Read Jon Elster on this!)

• In models of “Habit Formation” preferences in time t depend on
actions in previous times. A simple functional form that you can try
playing with is: u(ct|ct−1, ct−2...) = u(ct,

P∞
s=1 ct−s)

• Other possibilities include “Anticipatory utility” and “Reference-
dependent utility”

7.7 Readings for Next Week

We have then the tools we need to represent preferences over particular
outcomes as well as preferences over uncertain outcomes. Our discussion
treated certainty as exogenous however whereas in fact in many games a
player’s information may depend on how the game is played and in partic-
ular on the actions and the inferred information of other players.We turn
to these issues next. The main reading, besides these notes, is Geanako-
plos’ excellent discussion of Common Knowledge in which he introduces
in a non-technical manner a number of core results in “interactive episte-
mology.” If you wish to go further in this direction, Geanakoplos refers to
more formal treatments in the text and the Branderburger pieces on the
syllabus are very interesting. The second reading by Roger Myerson is also
relatively straightforward, but is good at communicating how the approach
taken by Harsanyi to model games of incomplete information (and subse-
quently adopted by everyone else) was a major and difficult step forward in
the development of game theory. For more, read the Harsanyi piece itself,
given on the syllabus.



This is page 87
Printer: Opaque this

8
Information

We begin with a recap on the use of Bayes’ rule in game theory, along
with a discussion of how it is used when type or actions spaces are discrete
or continuous. We then touch on a rich and fast growing branch of game
theory — interactive epistemology — that draws on Bayes’ rule and related
work but provides a series of surprising results that are of general interest
but also help in modelling games of incomplete information.

8.1 Bayes’ Rule

8.1.1 Bayes’ Rule with Discrete Type and Action Spaces

In our discussion of von Neumann-Morgenstern utilities1 we showed how to
model a player’s evaluation of uncertain outcomes given his beliefs about
which outcomes were more or less likely. There we had that given a set
of possible outcomes, X = (x1, x2, ..., xs) and probabilities associated with
each one, p = (p1, p2, ..., ps) we could write the player’s expected utility as:

U(p) =
Xs

j=1
pju(xj)

1 In all that follows this week we assume that players have von Neumann Morgenstern
utilities. An interesting topic might be to think about how these results change if we
cannot make use of the Expected Utility Theorem.
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Now we are going to deal with where those probabilities come from. We
need to do this because, in practice, they may depend on aspects of the
game and in particular we need to know how players form their beliefs about
what these probabilities are during the course of play: in other words, we
need to know how players update.
The classic place to start to model updating is Bayes’ Rule. The rule is

relatively simple. Unfortunately it has been shown in experiments and in
survey work that people do not in fact follow Bayes’ rule closely and are
terrible at answering questions that involve Bayesian updating. So, because
it doesn’t come naturally to us, we got to learn it. (Even as we recognize
that, in part because it doesn’t come naturally to us it might not be terribly
appropriate for positive theory).
The easy equation to remember is:

Pr(a, s) = Pr(a|s) Pr(s) = Pr(s|a) Pr(a)

For example let Pr(a, s) denote the probability that when you pull out
a card from a deck it turns out to be the Ace of Spades; that is, Pr(a, s) is
the probability that it will be both an Ace, “a” and a spade “s.” And of
course in this case Pr(a, s) = 1

52 .
However, Pr(a, s) = 1

52 , is also the answer to the product of the answers
to the two questions:

1. What’s the chance, Pr(s), of choosing a spade? (14). And:

2. Given that a spade is chosen, what’s the chance, Pr(a|s), of choosing
an Ace? ( 113).

Asking these two questions is one convoluted way to ask the original ques-
tion. Nevertheless it’s good to know that multiplying the answers from these
two questions gives the same answer for the probability of choosing the Ace
of Spades: 113

1
4 = Pr(a|s) Pr(s) = Pr(a, s) =

1
52 . So far so sensible. Similarly

we have Pr(s|a) Pr(a) = Pr(a, s) and so Pr(a|s) Pr(s) = Pr(s|a) Pr(a). As-
suming Pr(s) > 0, one manipulation of this equality then gives:

Pr(a|s) = Pr(s|a) Pr(a)
Pr(s)

To calculate Pr(s) we can consider any partition of the sample space
into an exhaustive and mutually exclusive set of events (a, b, c...). We then
have Pr(s) = Pr(s|a) Pr(a) + Pr(s|b) Pr(b) + Pr(s|c) Pr(c) + ... And hence
we have:

Pr(a|s) = Pr(s|a) Pr(a)
Pr(s)

=
Pr(s|a) Pr(a)

Pr(s|a) Pr(a) + Pr(s|b) Pr(b) + ...
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And this is Bayes’ rule. Before using the rule to describe updating let’s
get used to using it for simple inference problems. Consider the following
examples.

Example 79 Assume that 2% of politicians are honest and 1% of political
scientists are honest (H). Assume that there is an equal number of political
scientists and politicians: say a person is chosen at random and found to be
honest. What are the chances that he is a politician? This is found using:

Pr(pol’n|H) =
Pr(H|pol’n) Pr(pol’n)

Pr(H|pol’n) Pr(pol’n) + Pr(H|poli scientist) Pr(polit scientist)

=
2
100

1
2£

2
100

1
2 +

1
100

1
2

¤
=

2

3
.

Example 80 What if there are twice as many political scientists as there
are politicians? We then have:

Pr(politician|honest) =
2
100

1
3£

2
100

1
3 +

1
100

2
3

¤ = 1

2

Hence even though a politician is twice as likely to be honest as a politi-
cian, the chances that a random honest person is a politician is just .5.

Exercise 81 (From Gintis) The poet and the saint each tell the truth one
third of the time. The poet says of the saint “she just told the truth.” What’s
the probability that the saint told the truth?

Exercise 82 (From Gintis) The Greens and the Blacks are playing bridge.
After a deal, an on-looker, Mr Brown, asks Mr Black “Do you have an ace
in your hand?” He nods yes (truthfully!). After the next deal Mr Brown
asks Mr Black “Do you have the Ace of spades in your hand?”He nodes yes
again (again, truthfully!). In each case, what are the probabilities that Mr
Black has a second Ace.

For describing rational updating, Bayes’ little equation is surprisingly
useful. We will see that a classic usage is for situations in which Player 1
is uncertain about the type of the person she is playing with, Player 2, but
has beliefs about how each different type of player might behave.

• Let the set of possible types be given for Player 2 by:Θ2 = {θ1, θ2, ..., θn}.

• Assume that 2 can take an action a ∈ A

• Assume that Player 1 has estimates of what a given type is likely
to do: in particular she has an estimate of Pr(a|θ) for every a ∈ A,
θ ∈ Θ2.
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• Assume also that Player 1 has some “priors” on Player 2’s type. She
then has an estimate of Pr(θ) for each θ ∈ Θ2.

The question then is, if Player 1 observes a particular action, a, made by
Player 2 can she then get a better estimate for Pr(θ2) than what she had
before?
Surely. Using Bayes rule, she has for each type θ0 :

Pr(θ0|a) = Pr(a|θ0) Pr(θ0)P
θ∈Θ2

Pr(a|θ) Pr(θ)

What if she then observed a second, independent, action a0, will she learn
something new? Yes:

Pr(θ0|a0, a) =

Pr(a0|θ0)
Ã

Pr(a|θ0) Pr(θ0)P
θ∈Θ2

Pr(a|θ) Pr(θ)

!
P
θ∈Θj

Pr(a0|θ0)
Ã

Pr(a|θ0) Pr(θ0)P
θ∈Θ2

Pr(a|θ) Pr(θ)

!

=
Pr(a0|θ0) Pr(a|θ0) Pr(θ0)P

θ∈Θj
Pr(a0|θ) Pr(a|θ) Pr(θ)

And so on. After observing t such independent actions, Player 1 has a
new estimate:

Pr(θ0|a1, ..., at) =
Qt
k=1 Pr(ak|θ

0) Pr(θ0)P
θ∈Θj

Qt
k=1 Pr(ak|θ) Pr(θ)

A related usage is this: When applied to working out which node “x”
you are at, given that you are in a particular information set, ι and given
a strategy profile σ. The appropriate formula is:

Pr(x|ι,σ) = Pr(ι|x,σ) Pr(x|σ)
Pr(ι|σ)

However, if x ∈ ι, then by the definition of information sets, we have
Pr(ι|x,σ) = 1, and so:

Pr(x|ι,σ) = Pr(x|σ)
Pr(ι|σ) =

Pr(x|σ)P
x0∈ι Pr(ι|σ)

Finally, worth noting (and of great importance in what follows in later
weeks): Pr(x|ι,σ) is undefined if Pr(ι|σ) = 0. In words: if we believe that
no one could do a particular thing, but that thing is nevertheless done, then
we have no clue who did it.



8.1 Bayes’ Rule 91

Some of the implications of Bayes’ rule are surprising and many do not
come easily to humans. In many cases the frequency method can be em-
ployed with a computer to use Bayes’ rule “empirically” by simply taking
large numbers of samples and recording frequncies of cases in which events
obtain or do not obtain given different conditions. Try modelling the fol-
lowing either directly or using a computer:

Exercise 83 A game is played in which one of two players chooses a dice
from a set of three dice. After the first player chooses, the second player
chooses a dice from the remaining two that are left. Then the two role their
dice simultaneously. The player that turns up the highest number wins. In
this game however, although the dice are fair in the sense that any side is
equally likely to come up, the numbers on the face of the three dice differ.
Dice 1 has the following six numbers on its face: {5, 7, 8, 9, 10, 18}; dice 2
has {15, 16, 17, 2, 3, 4} and dice 3 has {1, 6, 11, 12, 13, 14}. Find player
2’s optimal choice of dice given any choice of dice by Player 1. Which dice
should player 1 choose? The problem is just one of finding the probability
of winning given any two dice that are chosen. The result is however a little
confusing.

8.1.2 Bayes’ Rule with Continuous Type and Action Spaces

When type and/or action spaces are continuous we typically need to work
with distributions rather than with probabilities. The principle and the rule
however, is essentially the same. Now however we work out the posterior
distribution f(θ|m) of a type, θ given some signal, m. The trick then is to
find f(θ|m). The version of Bayes’ rule that we use for density functions is
given by:

f(θ|m) = g(m|θ)f(θ)
g(m)

=
g(m|θ)f(θ)R
g(m|θ)f(θ)dθ

One common application is the need to calculate the expectation of θ
when you observe a signal which is drawn from some distribution that
itself is a function of θ. Consider for example the following problem:

• θ is distributed over X, with density function f(θ)

• For any true value of θ, some signal (message) m ∈ X is generated
according to the density function g(m|θ)

• You need to calculate your best guess for θ given that you observe a
signal m.

To solve the problem you need to work out the distribution of θ given
m, call this posterior distribution f(θ|m). Once you know f(θ|m), you can
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work out E(θ|m) using E(θ|m)=
R
θf(θ|m)dθ. Using Bayes’ rule we then

have, simply, E(θ|m)=
Z

θ
g(m|θ)f(θ)R
g(m|θ)f(θ)dθdθ.

Example 84 To develop your intuition, work through the following exam-
ple. Say that θ is distributed uniformly over [0, 1] (hence f(θ) = 1). The

expected value of θ is Eθ =
R 1
0
θf(θ)dθ =

R 1
0
θdθ = θ2

2

¯̄̄1
0
= .5. If θ is re-

alized, the signal m, is drawn from the distribution with density function,
g(m|θ) = 4θm + 2(1 − m − θ). (This density function puts more weight
on lower declarations if indeed lower θ0s are observed, and higher weight if
higher θ0s are observed). Let’s now work out E(θ|m).
Using Bayes’ rule we have:

f(θ|m) = g(m|θ)f(θ)R
g(m|θ)f(θ)dθ =

4θm + 2(1−m − θ)R 1
0
4θm + 2(1−m − θ)dθ

= 4θm+2(1−m−θ)

In this simple very symmetric case then, the density function f(θ|m) in
fact equals g(m|θ). (This is not generally true.2)
We can now work out E(θ|m), and this is given by:

E(θ|m)=
Z 1

0

[4θm + 2(1−m − θ)]θdθ =
1 +m

3

Note that if a signal of m = .5 is observed, then your best guess for θ is
simply θ = .5; if however, m = 1, then your best guess for θ is as high as
2
3 .

8.2 Interactive Epistemology

8.2.1 Information Partitions

Recall in our description of extensive form games with incomplete informa-
tion, we used the notion of an information partition. We said for example
that if a player had partition Ii =[h1, h3 | h2.| h4, h5, h6], then should h1 or
h3 occur, the player knows that one of these occurred but not which one of
these occurred; if h2 occurs she will not confuse it for anything else; if h4,
h5 or h6 occurs then she knows one of these occurred but not which one.

2To see an asymmetric case, imagine that f(θ) = 2θ but g(m|θ) is as before. In this
case your prior is such that you are more likely to see a high θ in the first place. We have:

Eθ =
R 1
0 θf(θ)dθ = 2θ3

3

¯̄̄1
0
= 2

3
. But, f(θ|m) = g(m|θ)f(θ)R 1

0 g(m|θ)f(θ)dθ
= (4θm+2(1−m−θ))θ

1+m
3

. And

so E(θ|m)= R 10 (4θm+2(1−m−θ))θ
1+m
3

θdθ = m+.5
m+1

.
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We now generalize this notion of a partition somewhat. More generally,
let Ω denote the set of all possible states of the world (previously we used
H). A typical element of Ω, such as ω is a state of the world.
Let a partition of Ω by player i be denoted Pi (previously we used Ii).

Now it is useful to think of Pi as a function that maps from the states of
the world to the cells of Pi. For example if Pi divides the set of integers
into the evens and the odds, then Pi(1) is the same as Pi(3) and Pi(5); each
corresponds to the set of odd numbers. The set of even numbers is given for
example by Pi(2), or by Pi(4) and so on. In the example of indistinguishable
histories used above Pi(h1) = {h1, h3}.
We can also usefully apply Pi to sets of elements in Ω. Now for event E

(i.e. set of states of the world E), let Pi(E) denote the set of all states of
the world that player i thinks might be possible if the true state were an
element of E. Hence: Pi(E) = ∪ω∈EPi(ω).
We now have what we need to say that somebody “knows” something:

i knows E at ω if Pi(ω) ⊂ E. This means is that if the true state is ω,
i may be uncertain what the true state of the world is, but if all of the
things that he believes are possible imply E, then i knows E. (note that we
are relying on the fact that is possible also to make statements about the
truth of groups of elements in Ω if we are able to make statements about
an individual element in Ω: if E is a set of states of the world, if the true
state of the world is ω and if ω ∈ E, then not only is ω true, but E is true
as well3).
For some of the discussion that follows, it is useful to employ a “knowl-

edge function” of the following form:

Ki(E) = {ω ∈ Ω|Pi(ω) ⊆ E}

Hence for a given event E, the knowledge function returns all elements
of Ω at which i knows E. In the example above Ki(h1) = ∅, Ki(h2) = h2,
Ki({h1, h2}) = h2, Ki({h1, h2, h3}) = {h1, h2, h3}. Note that Ki(E) is
itself an “event” (that can occur at many different states of the world); it
is precisely the event “i know E.” Since it is an event it can also be treated
as an argument in a knowledge function. Evidently if ω ∈ Ki(E) then i
knows E at ω.

Problem 85 (see O&R) What do the following statements mean? (i)
For all E, Ki(E) ⊆ E (ii) For all E, Ki(E) ⊆ Ki(Ki(E)) (iii) For all
E, Ω\Ki(E) ⊆ Ki(Ω\Ki(E))

3For example ω could be the state in which oil costs $70 a barrel. Another state of
the world, ω0 might be one in which oil costs $60. And define E = {ω,ω0}. In this case
we might label the event E with “states in which oil is $60 or $70 a barrel.” For this
example the statement {for ω ∈ E, ω is true implies E is true}, is obvous once given in
English: if oil is $70 a barrel, then oil is $60 or $70 a barrel.
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To recap: Pi(E) returns all states that i thinks possible if the truth were
in E, Ki(E) returns all states that, were they in fact the true state, i would
know E.
Relatedly we can define a function to describe the event “everyone in N

knows.” Everyone knows E is the set:

KN (E) = {ω ∈ Ω|
[
i∈N

Pi(ω) ⊆ E}

Evidently the set of states in
S
i∈N Pi(ω), is larger than the set of states

in Pi(ω) or some particular i, and hence the condition
S
i∈N Pi(ω) ⊆ E is

harder to satisfy. Clearly then the set KN (E) is a subset of Ki(E) for each
i (or, more trivially, if everyone knows E, then each person knows E).
The event everybody knows that everybody knows E can be written

KN (KN (E)), or more compactly, K2
N (E). We define K

r
N (E) for any such

sequence of statements.
If for every ω ⊂ E, Pi(ω) ⊂ E, then E is “self-evident” (to i)–that

is, whenever E occurs, i knows it. Using the knowledge function: E is self
evident to i if E = K(E). Clearly Pi(E) = E implies that E is self evident.
(Note that the idea of being self evident here is a little different to normal
usage, rather than being a property of the thing itself, self-evidence is a
function of an individual’s information; that might be self-evident to you
but not to me...)
This framework starts getting really interesting when we start asking

what do players know about what other players know. Let’s motivate this
with an example.

Example 86 Suppose that player 1’s partition divides prices into two cells,
those between 0 and $33 and those between $34 and $100. Suppose that
player 2’s partition divides prices into two cells, those between 0 and $66
and those between $67 and $100. Say that a price is low if it is $75 or
below. Hence: L = {ω ∈ Ω|ω ≤ 75) = [0, 75]. Assume furthermore that each
player knows the other’s partition.
Now, say the price is in fact $25. Then both Players know the price is

low. But do they know that they know that? Formally, we know that the
players know the price is low because P1(ω∗) = [0, 33] ⊂ L and P2(ω∗) =
[0, 66] ⊂ L. Applying the P operators over sets we have P2(P1(ω∗)) =
[0, 66] ⊂ L : in words: 1 knows that 2 knows that the price is low. In
contrast, P1(P2(ω∗)) = Ω 6⊂ L. and so 2 does not know that 1 knows
that the price is low (since plausibly the true price is between 33 and 66).
Furthermore, P1(P2(P1(ω∗))) = P2(P1(P2(ω∗))) = Ω, and so neither knows
that the other knows that the other knows that the price is low.

As the example shows, if players know the other players’ partitions, even
though they do not necessarily know what the other knows, we can still,
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given any state of the world, work out what each player knows and what
they know about what the other players know, and so on...
For a second example, consider the player partitions shown in Figure 8.1:

Pi 

Pj 

a b c d e f g h i j k l

a b c d e f g h i j k l

FIGURE 8.1. Example of partitions of players i and j two partitions over events
a− l.

There are states of the world a - l. Some are distinguishable to some
players, others to others. For example, state of the world f is self evident
to player i. But j cannot tell f apart from outcomes b, c, d, or e. Player
j knows that event a occurs whenever it occurs, but i can’t distinguish
between a and b.
Given these partitions, Figure 8.2 shows some examples of iterated ap-

plications of the Pi, Pj and the Ki, Kj functions.

Note that with repeated iteration of the Pi operators the resulting sets get
larger until some point where they remain constant (but possibly containing
all of Ω); with repeated iteration of the Ki operators the resulting sets get
smaller until some point where they remain constant (but possibly empty).

Problem 87 Find Pi(Pj(Pi(Pj(a)))), Pj(Pi(Pj(Pi(f)))),
Kj(Ki(Kj(Ki({a, b, c, d, e, f, g, h, i})))), and Kj(Ki(Kj(Ki(Pi(Pj(Pi(Pj(l)))))))).

Provide an interpretation for each of these.

The final example, discussed in Figure 8.3, is based on a well known
riddle and shows how these concepts can be used to study a tricky puzzle.

8.2.2 Common Knowledge

The example also shows how to apply the partition operator iteratively in
order to identify what states agents deem possible given a chain of reason-
ing. We use this iterated application to define a notion of reachability :

Definition 88 State ω0 is “reachable” from state ω if there exists a se-
quence of agents i, j, ..., k for whom ω0 ∈ Pk(...(Pj(Pi(ω))))

The interpretation of ω0 ∈ Pk(...(Pj(Pi(ω)))) in English is at state ω, i
thinks that j may think that....k may think that ω0 is possible. If for some
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Pi, Pj 
ω Pi(ω) Pj(Pi(ω)) Pi(Pj(Pi(ω))) (Eventual) 

Interpretation 
The state is ω At ω i knows that the 

state is one of the 
elements in Pi(ω) 

At ω j knows that i 
knows that the state is one 

of the elements in 
Pj(Pi(ω)) 

At ω i knows that j knows 
that i knows that the state 
is one of the elements in 

Pi(Pj(Pi(ω))) 

 

a Pi(a)={a,b} Pj({a,b})  
= {a,b,c,d,e,f,g,h} 

Pi({a,b,c,d,e,f,g,h })  = 
{a,b,c,d,e,f,g,h,i} 

At a, event 
{a,b,c,d,e,f,g,h,i}is 
common knowledge  

d Pi(d)={c,d,e} Pj({c,d,e})  
= {b,c,d,e,f,g,h} 

Pi({b,c,d,e,f,g,h })   
= {a,b,c,d,e,f,g,h,i} 

At d, event 
{a,b,c,d,e,f,g,h,i}is 
common knowledge 

j Pi(j)=j Pj(j) = j Pi(j) = j At j, event {j}is 
common knowledge 

k Pi(k)={k,l} Pj({k,l}) = {k,l} Pi({k,l}) ={k,l} At k, event {k,l}is 
common knowledge 

 
Ki, Kj 

E Ki(E) Kj(Ki(E)) Ki(Kj(Ki(E))) (Eventual) 
Interpretation 

The event is E At ω∈ Ki(E) i knows 
that something in E has 

occurred (i knows E) 

At ω∈ Kj(Ki(E)) j 
knows that i knows E 

At ω∈ Ki(Kj(Ki(E))) i 
knows that j knows that i 

knows E 

 

E={a,b} {a,b} Kj({a,b}) = {a } Ki(Kj(Ki(E)))= Ki(a) =∅ {a,b}is never 
common knowledge 

E={d,e,f,g,h,i
,j} 

{ f,g,h,i,j } Kj(f,g,h,i,j) = {i,j} Ki({i,j})  = {j} {d,e,f,g,h,i,j} is 
common iff ω=j 

E={k,l} {k,l} Kj({k,l}) = {k,l} Ki({k,l}) = {k,l} {k,l} is common 
knowledge whenever 

it occurs 
 

FIGURE 8.2. Usage of the Pi and Ki operators.

event, ω ∈ E, every state that is reachable from ω is in E, then no chain
of reasoning will lead any one to doubt that E is true at state ω. In such
situations we say that E is common knowledge. The formal definition is as
follows:

Definition 89 (Lewis 1969) Event E is “common knowledge” at state
ω if for every n ∈ {1, 2, ...} and every sequence (i1, i2, ...in) we have
Pin(...(Pi2(Pi1(ω)))) ⊂ E.

• (Variation 1; Using the idea of reachability) E is common knowledge
at ω if every state that is reachable at ω is in E.

• (Variation 2; Using the knowledge operator) E is common knowledge
at state ω if for every n and every sequence (i1, i2, ...in) we have
ω ∈ Kin(...(Ki2(Ki1(E)))).

• (Variation 3; Using the “everybody knows” operator) E is common
knowledge at state ω if ω ∈ K∞N (E).

Problem 90 Prove that these four definitions are equivalent.
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Now assume that it is made common knowledge that 
“not 000.”  Each woman is asked in turn whether she 
has egg on her face; the first two say “no” the third 
says “yes.” Why is this? 
 
(i) Since “not 000” 1’s partition over possible events is:  

(ii) if 1 announces that the event “1 does not know 
whether she has egg on her face” E= 
{010,110,001,101,011,111} is true and this is 
common knowledge, then, 2’s partition over E is:  

With such partitions we can associate what states 
must obtain for given beliefs to be possible. For 
example: Assume that all know that somebody has 
egg on their face. Given this, the event “1 does not 
know that she has egg on her face” is then: 
{010,110,001,101,011,111}. The event “2 knows that 
1 does not know that she has egg on her face” is: 
{001,101,011,111}. Then the event “3 knows that 2 
knows that 1 does not know that she has egg on her 
face” is {001}.  Hence 3 knows that 2 knows that 1 
does not know that she has egg on her face only if 3 
is the only person with egg on her face. Intuitively, 
because 3 knows in this state that she (3) has egg on 
her face, she knows that 2 knows that 1 knows that 3 
has egg on her face and hence that 2 knows that 1 
knows that it is not the case that both 2 and 3 do not 
have egg on their face, hence 1 is unsure whether she 
(1) has egg on her face. If in fact either 1 or 2 had 
egg on their faces, then 3 would not know that she 
had egg on her face in which case plausibly she 
would not in which case plausibly 2 might think that 
only 1 had egg on her face in which case 1would 
know that she had egg on her face. 
 

In this example a state, given in the form, “abc”
denotes whether each of players 1, 2 or 3 has egg on 
her face; 000 indicates that none do, 101 indicates that 
1 and 3 do but 2 does not and so on. Each player can 
observe the condition of other players but not their 
own condition. This gives rise to these partitions:

Egg on your face

000 

010 

001 

011 

100 

110

101 

111

000 

010 

001 

011 

100 

110

101 

111

000 

010 

001 

011 

100 

110

101 

111

010

001

011

100

110 

101

111 

(iii) Given this partition, the event “2 does not know 
that she has egg on her face” is given by 
{001,101,011,111}. Once announced, it now 
becomes common knowledge that 3 has egg on her 
face.  Player 3’s partition becomes 

010

001

011

110 

101

111 

001

011

101

111 

001

011

101

111 

001

011

101

111 

Hence, 3 can tell the exact state of the world. But 
since at this stage it is common knowledge that she 
has egg on her face, announcing that she has egg on 
her face adds no new information and the 
partitions of 1 and 2, shown below, do not allow 
them to work out their state or to provide new 
knowledge. 

P1 P1

P1

P2

P2

P2 

P3 

P3

FIGURE 8.3. Learning from the Ignorance of others
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These definitions, though intuitive, require that the analyst checks, in
principle, an infinite number of statements in order to ensure that an event
is common knowledge. The following theorem, due to Aumann provides a
tool for checking for common knowledge in a finite number of steps:

Theorem 91 (Aumann’s definition of Common Knowledge) LetM(ω)
denote the smallest set containing ω that is simultaneously self evident to
all players. Then E is common knowledge at ω if and only if M(ω) ⊂ E.

Remark 92 Note, although Theorem 91 reads like a definition, if we al-
ready have Lewis’ definition (or related definitions) then Theorem 91 can
be read as the identification of necessary and sufficient conditions for an
event to be common knowledge.

I find that the following equivalent statement lends itself more easily to
identifying when an event is common knowledge: let M denote the finest
common coarsening (the “meet”) of the players’ partitions, then, to be
common knowledge at ω, an event, E, must be a superset of M(ω).
For intuition refer back to Figure 8.1. The finest common coarsening of

these partitions, denoted by M , is shown in Figure 8.4.4

Pi 

Pj 

P* - The finest common coarsening of Pj and Pj 

a b c d e f g h i j k l

a b c d e f g h i j k l

a b c d e f g h i j k l

FIGURE 8.4. Coarsenings: An example of the finest common coarsening (the
“meet”) of two partitions.

What does M(ω) look like for different states ω? Begin with ω = a. We
can see that if a occurs, all players know that the state is either a or b. In
particular Pi(a) = {a, b} and Pj(a) = a. But is the event “ω is either a or

4To see that M is a common coarsening note simply that is is a coarsening of each
of Pi and Pj . to see that it is the finest such common coarsening consider a partitioning
M 0 that differs from M only in that some two elements that lie within a single cell of M
lie within separate cells of M 0. It is easy to check that any such division must separate
two elements that both lie in a single cell of Pi or Pj in which case M is not a coarsening
of one of Pi or Pj .
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b” common knowledge? We can see from the above definition that it is not.
Looking at M we see that M(a) = {a, b, c, d, e, f, g, h, i}, clearly {a, b} is
not a superset of M(a) and hence is not common knowledge. The reason,
intuitively is that, although at a, j knows that ω = a and also knows that i
knows that ω ∈ {a, b}, i does not know that j knows that ω ∈ {a, b}, since
j believes it possible that ω = b in which case it is possible that i believes
ω ∈ {b, c, d, e, f, g, h}.
Nonetheless supersets of M(a) do exist, and hence there are events that

are common knowledge at ω = a. In particular M(a) is itself common
knowledge; so are other combinations of the cells inM involvingM(a), such
as M(a) ∪ {j}, and so too are other unions that involve any other states
beyond those contained in M(a) ,such as {a, b, c, d, e, f, g, h, i, l}, even if
these are not themselves unions of cells of M .
By a similar logic we see that M(j) = j, and hence j is itself common

knowledge when it occurs, as is the event M(a) ∪ {j} when j occurs.
Using the language of reachability we have that a state ω0 is reachable,

if and only if it is an element of M(ω).

Proof of Theorem 91. The proof we use shows that Variation 3 in
definition 89 implies and is implied by the condition in Theorem 91.

• Sufficiency. We first show that if an event is a superset of M(ω) then
it is common knowledge.

• Step 1. The event M(ω) is common knowledge for every event
ω0 in M(ω). Using our “everyone knows” operator we establish in
Step 1a thatKN (M(ω)) =M(ω), in step 1b we show that this implies
that K∞N (M(ω)) =M(ω).

• Step 1a. KN(M(ω)) = M(ω). This follows from the definition of
KN and the fact that M(ω) is a coarsening of each Pi. To see this,
recall that KN (M(ω)) = {ω|

S
i∈N

Pi(ω) ⊆ M(ω)}. Assume first that

some ω ∈ M(ω) is not in KN (M(ω)), but this implies that for this
ω, Pi(ω) 6⊆ M(ω), contradicting the fact that M(ω) is a coarsening
of Pi(ω). Assume next that some ω0 is in KN (M(ω)) but not in
M(ω). But if ω0 is in KN (M(ω)) then

S
i∈N

Pi(ω
0) ⊆ M(ω), since

ω0 ∈ Pi(ω0) for each i, we have ω0 ∈
S
i∈N

Pi(ω
0) and hence ω0 ∈M(ω),

a contradiction Hence KN(M(ω)) =M(ω). But since for any ω each
set Pi(ω) is in M(ω), the union of these sets is in M(ω).

• Step 1b. Since KN (M(ω)) = M(ω), it follows that K2
N (M(ω)) =

KN (M(ω)) =M(ω) and by induction that K∞N (M(ω)) =M(ω).

• Step 2. Every superset of M(ω) is common knowledge at ω.
This step follows trivially from the fact that for superset E of M(ω),
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K∞N (M(ω)) ⊆ K∞N (E). Since M(ω) is common knowledge, so too is
E.

• Steps 1 and 2 establish sufficiency.

• Necessity. Now we want to show that if E is common knowledge at
ω, M(ω) ⊆ E. To see this, suppose that there exists some ω0 in
M(ω) but not in E. Since ω0 is in M(ω) there exists a sequence
k = 0, 1, ...,m with associated states ω0,ω0, ...ωm with ω0 = ω and
ωm = ω0 such that ωk ∈ Pi(k)(ωk−1) (this operationalizes the idea
of reachability). Now, at information set Pi(m)(ωm−1), ωm−1 and ωm
are in the same partition of player i(m) but since ωm is not in E,
i(m) does not know E at ωm−1.5 Working backwards on k, we have
that E cannot be common knowledge: that is, at ωm−1, i(m) does not
know E; hence at ωm−2, it is not true that i(m− 1) knows that i(m)
knows E;.at ωm−3, it is not true that i(m− 2) knows that i(m− 1)
knows that i(m) knows E... .; continuing like this we have that at ω0,
it is not true that i(1) knows that i(2) knows that... i(m) knows E.
Hence E is not common knowledge.

8.2.3 Agreeing to disagree

Now let us introduce a notion of subjective probabilities over states of the
world. Letting pi(E) denote a player’s prior belief that event E will occur
and qi(E) the player’s posterior belief.
Aumann’s agreement theorem is as follows.

Theorem 93 (Agreeing to disagree) If qi is common knowledge and if
all players have common priors, then qi = qj for all i and j.

As a preliminary to the proof consider the following immediate but useful
facts:

• If for two elements pi(ω0) 6= 0 but pi(ω00) = 0, then ω00 /∈ Pi(ω). In
other words, a zero probability event does not appear in the same
partition as a positive probability event. Why?

• If for any ω0 ∈ Pi(ω), pi(ω0) > 0, then qi(ω00) is well defined for all
ω00 in Pi(ω). This follows easily from an application of Bayes’ rule:
Pr(ω00|P (ω)) = Pr(P (ω)|ω00)×Pr(ω00)

Pr(P (ω)) = Pr(ω00)
Pr(P (ω)) . The denominator is

well defined if for some ω0 ∈ Pi(ω), pi(ω0) > 0

5To work through the logic graphically refer to figure 8.4, let E = {a, b, c, d, e, f, g, h}
and identify a path from a to i.
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• Similarly, using Bayes’ rule, a player with partition Pi in state of the
world ω (and assuming p(Pi(ω)) 6= 0) assigns posterior probability to
event E by:

qi = qi(E∩Pi(ω)|Pi(ω)) =
pi(Pi(ω)|E ∩ Pi(ω))pi(E ∩ Pi(ω))

pi(Pi(ω))
=
pi(E ∩ Pi(ω))
pi(Pi(ω))

Example 94 Consider the roll of a dice and an information partitioning
for player i given by: Pi = ({1, 2, 3}, {4, 5}, {6}).Let E denote the set of
cases in which the state of the world is even. The subjective probability of E,
given that a 1 is observed is clearly qi(ω ∈ 2|ω ∈ {1, 2, 3}) = Pr(ω∈2)

Pr(ω∈{1,2,3})

• The subjective probabilities of any event E at state of the world ω
depend on P (ω), and hence is the same for any other state of the
world ω0 in P (ω). You can’t condition on something you don’t know.
In other words, the subjective probability is constant across elements
in a player’s information partition Pi(ω).

The key move in Aumann’s proof relies on the fact that with common
knowledge, these probabilities are also constant across elements on a cell
of the meet of the players’ partitions : M(ω). This is the least obvious step
in the proof that follows so let’s look at it more closely. The intuition is
the following: say that at state of the world ω, player i holds the posterior
probability qi(E|ω) = q∗. Clearly he also holds this for any event ω0 in
Pi(ω). Now, player j does not know the true state ω and hence does not
know the set of events Pi(ω) that i is conditioning upon when calculating
qi(E). But if it is the case that at ω, j knows that qi = q∗ then she knows
this not just at ω but also for all elements in Pj(ω). Similarly for all other
states ω in Pi(ω) and hence for all states in Pj(Pi(ω)). Since i knows that
j knows that qi(E|ω) = q∗ we then have it must be that qi(E|ω0) = q∗ for
all ω0 in Pi(Pj(Pi(ω))); and so on. Continuing in this manner we simply
have qi(E|ω0 ∈M(ω)) = qi(E|ω) = q∗.
Armed with these elements we move to the proof.
Proof of Theorem 93. Now since players have common priors over

the elements of Ω, using Bayes’ rule, as above, a player with partition Pi
in state of the world ω (and assuming p(Pi(ω)) 6= 0) has posterior:

qi =
p(E ∩ Pi(ω))
p(Pi(ω))

Note that qi has subscript i even though p does not because p is applied
over sets Pi subscripted by i. And hence: qip(Pi(ω0)) = p(E ∩ Pi(ω0)).
However, since qi is common knowledge, we have that this posterior is

constant across all elements ω0 inM(ω). Hence: qip(Pi(ω0)) = p(E∩Pi(ω0)),
for all ω0 in M(ω).
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Summing up over the disjoint sets Pi1, Pi2.. of M(ω) we have

qi (p(Pi1) + p(Pi2) + ...) = p(E ∩ P ) + p(E ∩ Pi2 + ...)

qi (p(M(ω
0))) = p(E ∩M(ω0)))

And hence qi =
p(E∩M(ω0)))
p(M(ω0))

We then have that qi does not depend on any term that is subscripted
by i but only on properties of the meet of the players’ partitionings, which
is constant across players. Repeating the reasoning for player j we have
qi = qj .

Remark 95 (Application to trade) : A series of no-trade or no-specultion
results follow fairly quickly from the previous result. The basic idea is that
in zero sum games with risk averse agents, if in equilibrium both parties
simultaneously agree on a trade, then it is common knowledge that each
believes that the trade favors them. But since they cannot agree to disagree,
each must assign the same value of the trade to each of them, so if i thinks
the trade is good for i but bad for j, so must j, in which case j will not
trade.

Remark 96 (Application to conflict) Consider the implication of the
theorem for models of inter state conflict. The theorem states that for any
model in which two countries, i and j assign subjective probabilities to the
chances that i wins a war, if the countries have common priors (although
quite possibly different information on which they can base their posterior
probabilities), then if pi and pj are common knowledge, pi = pj.

8.2.4 Rationalizability and Common Knowledge of Rationality

While these results, and related ones, help in modelling and in describ-
ing the informational structure of games, and their implications, they also
provide guidance regarding what solution concepts are defensible. Here we
ask the question: “how much” common knowledge do you need in order to
defend a particular solution concept?
For the analysis we treat actions as being a function of the state of the

world, and hence write action of player i in the form of a function ai =
ai(ω). This may seem odd since ω may be unknown to i, but this concern is
easily handled by the condition that ai(ω) = ai(ω0) for all ω0 ∈ Pi(ω). We
also introduce a belief function, also a function of the state, that describes
the belief that i has about the actions of other players: µi(ω); µi(ω) is
a probability distribution over the set of profiles of strategies of all other
players.
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Given these elements, we ask: what do we need to know about ai and µi
to justify the use of the Nash solution concept?
It is often said that common knowledge of rationality is enough to justify

Nash equilibrium as a solution concept. In fact this is not the case; nor
even are a series of stronger restrictions, at least in games with more than
two players. The following counterexample is provided by Osborne and
Rubinstein

FIGURE 8.5. one of the two rows, player 2 chooses one of the two columns,

.

Problem 97 Consider Figure 8.5. Assume (i) that all players have beliefs
that are consistent with their knowledge; that is, they assign positive proba-
bility only to actions profiles that are a function of states of the world that
i believes possible. (ii) (a strong assumption) all players know the beliefs
of all other players—that is for every state that i deems possible, j has the
same beliefs about the actions of all other players. (iii) all players know all
players to be rational, that is, that given a player’s equilibrium beliefs, his
equilibrium action is a best response to his beliefs (and this is known by all
about all players). Convince yourself [1] Strategy profile {D,L,B} is not a
Nash equilibrium. and [2]that if the state of the world is δ, the following
profile {D,L,B} is consistent with (i), (ii) and (iii).
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What of rationalizability as a solution concept? It turns out that we can
justify rationalizability. Any action that satisfied quite weak conditions on
the common knowledge of rationality is rationalizable.
Define a profile of rationalizable strategies as follows (another, although

equivalent, definition is given next week).

Definition 98 An action ai is “rationalizable” in a normal form game
if for each i ∈ N , ai is a member of a set Zi where each Zi ⊆ Ai and
every action a0i ∈ Zi is a best response to some belief µi whose support is a
function of a subset of Z−i.

Now we have the following claim (this given for two players, but extends
beyond two players):

Claim 99 Suppose |N | = 2 and that at state ω there is a self evident
event E containing ω and that it is common knowledge that (i) each player
is rational in the sense that ai(ω0) is a best response to µi(ω0) for all ω0 in
E and (ii) each player’s belief is consistent with his knowledge in the sense
that for all ω0 in E, µi(ω0) places positive probability only on actions that
are functions of states that i deems possible. Then a is rationalizable.

Proof. For each i ∈ N define Zi = {ai(ω0)|ω0 ∈ E}; that is Zi contains
all actions that i could take, given that he is rational, under any state that
is reachable from ω.
For each i ∈ N and ω0 in E define Si(ω0) as that set of actions that i

believes j might take if the state were ω0. Si(ω0) = {aj(ω00)|ω00 ∈ Pi(ω0)}.
For any ω0 in E, ai(ω0) is a best response to beliefs that have a support on

a subset of Si(ω0) (this is just the consistency condition (ii) in the statement
of the claim).
Since E is self evident Pi(ω0) ⊆ E.
Hence Si(ω0) ⊆ Zj .
In other words, each ai ∈ Zi is rationalizable because its support is a

subset of the set of actions that are rationalizable for j.
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9
Solution Concepts for Normal Form
Games

9.1 Iterated Elimination of Strictly Dominated
Strategies

There are some solution concepts that make less demands on a player’s
abilities. One relies on the elimination of dominated strategies. We use the
following definition:

Definition 100 In the normal form game G = hN, (Ai), (ui)i, strategy
a0i ∈ Ai is “strictly dominated” if there exists an a00i ∈ Ai such that
ui(a

0
i, a−i) < ui(a

00
i , a−i) for all feasible a−i.

Given this definition, one simple solution concept is the set of strategy
combinations that survive a “process of iterated deletion of strictly
dominated strategies.” The idea is this: eliminate all strictly dominated
strategies from each player’s strategy set, then eliminate any further strate-
gies that are strictly dominated once the first set of strategies have been
removed. Keep repeating this process until no more strategies can be re-
moved. The remaining strategy combinations are possible predictions under
this solution concept.

Problem 101 The idea of iterated deletion of strictly dominated strate-
gies is quite simply, albeit loosely, stated in words. A more formal state-
ment would have to express the “keep repeating this process” idea precisely.
One possibility to express this kind of idea is to define an infinite series of
sets recursively and look for the intersection of all these sets. The formal
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definition will also have to be explicit about the order of deletion. As an ex-
ercise in definition-writing, use this approach to define the set of strategies
(pure as well as mixed) that survive iterated deletion of strictly dominated
strategies formally. (For one possibility see Definition 2.1 in Fudenberg and
Tirole, for another see Definition 60.2 in Osborne and Rubinstein)

In simple games this approach makes weak demands on players’ strate-
gic abilities–they can use a simple algorithm to work out how to play a
game. Furthermore you can construct simple learning algorithms that lead
players that interact repeatedly to end up playing the strategies that are
selected by the elimination of strictly dominated strategies. And it does
not even (always) require “common knowledge” about the rationality of
the players (although infinite sequences of eliminations will require com-
mon knowledge).1 Also, the set of strategies that survives the process does
not depend on the details of how elimination is done. These are all good
properties of a solution concept. An unfortunate aspect however is that the
method may be very indeterminate in its predictions and predict a large
number of outcomes in games where other solution concepts (such as Nash
Equilibrium) can make unique predictions.

9.2 Iterated Elimination of Weakly Dominated
Strategies

We could define an analogous solution concept based on the elimination of
weakly dominated strategies (similar to the definition given above, we say
that strategy a0i ∈ Ai is “weakly dominated” if there exists an a00i ∈ Ai
such that ui(a0i, a−i) ≤ ui(a

00
i , a−i) for all feasible a−i and where the in-

equality is strict for at least one a−i). Even though intuitively this approach
has many of the same merits as the elimination of strictly dominated strate-
gies, it turns out that the approach has lots of problems. Most importantly,
what predictions the method produces depends not just on the game but
on the order in which you delete strategies. The problem is that a combina-
tion of strategies that survives the iterated elimination of weakly dominated
strategies may itself be weakly dominated, so whether it gets selected or
not depends on whether strategies that eliminate it get eliminated before
it or not. Furthermore, Nash equilibria may be eliminated by this process.

1We do not cover in this course the rich literature on the study of different types of
knowledge. Crudely however, if players i and j have common knowledge about x that
means that both i and j know x, they both know that the other knows x, they also both
know that they both know that the other knows x and so on. For more on knowledge
read Chapter 5 of Osborne and Rubinstein.
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Problem 102 Consider the following game: each of two players has to
guess a number between 1 and 5; if the two players match in their guesses,
or are no more than one out, they win $1 each, otherwise they get nothing.
What strategies survive iterated elimination of weak strategies (i) if the
order of deletion is: “delete one of player 1’s weakly dominated strategies,
then one of player 2’s strategies, then one of player 1’s remaining strategies
and so on... and (ii) if the order is “delete all of player 1’s weakly dominated
strategies, then all of player 2’s, then all of player 1’s remaining weakly
dominated strategies and so on...? Note how in (i) the answer depends on
which strategy you begin by deleting. Are the predictions from this method
more or less precise than predictions based on Nash equilibrium reasoning?
How would you play this game?

  Player II
   1 2 3 4 5 
Player I 1 (1,1) (1,1) (0,0) (0,0) (0,0)
  2 (1,1) (1,1) (1,1) (0,0) (0,0)
 3 (0,0) (1,1) (1,1) (1,1) (0,0)
 4 (0,0) (0,0) (1,1) (1,1) (1,1)
 5 (0,0) (0,0) (0,0) (1,1) (1,1)
 

FIGURE 9.1. Weakly Dominated Strategies

Problem 103 In an intriguing class of games, including some Battle of
the Sexes games, in which there are multiple Pareto efficient pure strategy
Nash equilibria, elimination of weakly dominated strategies can be used to
select one of the two equilibria if one of the players, say player 1, is given
an option to take some third action that affects his own payoffs adversely.
In these games Player 1 need never resort to this third, masochistic, action,
but the threat of being able to do so is enough to lead to the selection of
her preferred outcome from the Battle of the Sexes game through iterated
deletion of weakly dominated strategies. Construct an example of such a
game.

Exercise 104 Do Exercise 63.1 from Osborne and Rubinstein.

9.3 Rationalizable Strategies

Common knowledge of each other’s rationality can justify the iterated elim-
ination of dominated strategies: it can also be used to motivate a more
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precise solution concept: the set of rationalizable strategies.2 We say that a
strategy σi is a “best response” to a set of strategies σ−i if ui(σi,σ−i) ≥
ui(σ

0
i,σ−i) for all σ

0
i in ∆Ai.We say that a strategy σi is a “never a best

response” if there is no σ−i such that σ is a best response.
The set of “rationalizable strategies” is the set of strategies that

survives the iterated elimination of strategies that are never a best response.
Most importantly, any element of the set (and only elements of the set) can
be justified by a “chain of reasoning” of the form: I will play σi because I
believe that player j will play σj where σj is a best response by j if she
thinks that I am going to play σ0i (where σ

0
i is not necessarily equal to σi

) and so on. In other words: this is as good as you can get if all you want
to impose on player behavior is common knowledge of rationality.
Nice properties of the set of rationalizable strategies include

1. It exists (Bernheim 1984)

2. like the iterated elimination of dominated strategies, the order of
elimination does not matter

3. It can be identified in a finite number of iterations (in a finite game)

4. the set is a subset of the set of strategies that survive the iterated
elimination of dominated strategies

Exercise 105 Prove Property (4): the set of rationalizable strategies is a
subset (although not necessarily a strict subset) of the set of strategies that
survive the iterated elimination of dominated strategies. Also prove that
Nash equilibrium strategies are a subset of rationalizable strategies.

Problem 106 Consider the following game (Figure 9.2, taken from Vega-
Redondo, 2003). Identify the Nash equilibrium. Show that strategies (A,B,C,W,X,Y)
are all rationalizable.

9.4 Nash Equilibrium

Nash equilibrium is perhaps the best known solution concept for normal
form games. Recall that we defined the normal form game as a 3-tuple,
G = hN, (Ai)i∈N , (ui)i∈N i. The set of strategies for each player, Ai, could
be discrete actions (such as Left, Right) or elements from continuous sets–
such as a number between 0 and 1, or randomizations over more primitive
strategies (more on this below). Let a denote a typical profile of strategies
where a ∈ A1 ×A2 × ...×An We then have the following definition:

2Although in two player games the two solution concepts are equivalent.
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FIGURE 9.2. Identifying Rationalizable Strategies

Definition 107 A profile of strategies a∗, is a “Nash equilibrium” if for
each i ∈ N , we have: a∗i ∈ arg max

ai∈Ai
(ui(ai, a

∗
−i))

Note that the equilibrium is a profile of strategies: it is not a particular
outcome, or an action by any individual. To describe an equilibrium you
have to say what each player’s strategy is.
Nash equilibrium is a compelling solution concept primarily because any-

thing that is not a Nash equilibrium requires that some individual take an
action even though some other action would serve her interests better,
whatever those interests are.
But the concept has problems; common worries with the concept include

the following:

• Existence: a Nash equilibrium may not exist. Two examples are the
following. (I) Consider a two-person game in which each player can
declare heads or harps. Player 1’s utility is maximized if both players
declare the same thing; player 2’s is maximized if they each declare
different things. (II) Consider a two person game in which each person
can declare any integer, the person who declares the highest integer
wins.

• Precision: For other games the Nash solution concept can provide so
many different solutions that it provides little guidance. Consider a
game in which two players have to divide up a dollar between them.
Each individual has to declare some division. If the two divisions
coincide, then that division is implemented, if not then no division
is implemented and the game ends. Here there is an infinity of Nash
equilibria and the solution concept gives no determinate prediction
about how the dollar will be divided.

• Accuracy: In the context of extensive form games there are many
outcomes that may be Nash equilibria but that are rendered implau-
sible by the structure of the game. Consider the divide the dollar
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game mentioned above in which each player cares only about her
own share of the dollar and in which Player 1 first declares a division
and Player 2, after hearing Player 1’s declaration then makes her own
declaration. It is a Nash equilibrium for Player 1 to suggest 1 cent for
herself and 99 cents for Player 2. But in practice we would expect a
rational Player 1 to suggest something like 99 cents for herself and 1
cent for player 2...

• Plausibility: In some contexts it’s hard to know what exactly the
Nash equilibrium is describing. For situations where there are mul-
tiple Nash equilibria and players have never encountered each other
before, there are only weak grounds for expecting that the set of
strategies selected by players will correspond to a Nash equilibrium
profile unless players have some reasons to form expectations of the
strategies of others around some particular profile.

There are ways to refine the solution concept in order to address most of
these issues. First however we consider how the use of a generalization, equi-
librium in “mixed strategies” can solve some part of the existence problem.
First though, some engineering.

9.4.1 Locating Nash Equilibria in Games with Continuous
Action Spaces

The method for locating a Nash equilibrium a∗ when players have con-
tinuous action spaces and differentiable utility functions is to differenti-
ate ui(ai|a−i) with respect to ai, keeping a−i fixed. Taking the first order
conditions then allows us to write a∗ as a (possibly implicit) function of
a−i. Doing this for all players gives us a system of n equations, with each
equation giving a relationship between one element of a∗ and all the other
elements. Then any vector a∗ that solves this system of equations is a Nash
equilibrium. For an example, refer to our discussion of the Coase theorem
above.

9.5 Nash Equilibrium with Mixed Strategies

In Section 5.1.2 we defined the notion of mixed strategies. we did not how-
ever say how player’s evaluate a profile of mixed strategies. We are now in
a position to do that.
Making use of the Expected Utility Theorem from before we have that

if players have von Neumann-Morgenstern utilities, we can estimate the
expected utility that a player gets from some randomized strategy profile.
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Let a typical profile of pure strategies be written a ∈ A1 × A2 × ... × An
and recall that players have utility functions that are defined over such
profiles. Then, assuming independent randomization, a player’s expected
utility over a mixed strategy profile, σ, is given by:

ui(σ) =
X

a∈A1×...×An
p(a)u(a) =

X
a∈A1×...×An

Y
i∈N

σi(ai)u(a)

where p(a) =
Q
i∈N

σi(ai) is the probability of observing a given the mixed

strategies of all the players. The definition analogous to that given above
for a Nash equilibrium for this class of games is given then by:

Definition 108 A profile of mixed strategies σ∗ is a “Nash equilibrium”
if for each i ∈ N , we have: σ∗i ∈ arg max

σi∈∆(Ai)
(ui(σi,σ

∗
−i))

An advantage of the mixed strategy solution is that it exists for a large
class of games (Nash’s theorem).

9.5.1 Locating Mixed Strategy Nash Equilibria

An important property of a mixed strategy is the following. Assume that σ∗i
is part of an equilibrium profile σ∗ in which player i places positive weight
on some subset, A∗i , of elements of Ai. Then player i is indifferent between
σ∗i and any randomized strategy involving elements of A

∗
i , including each of

the pure strategies corresponding to playing elements of A∗i with certainty.
The reason for this is simply that if playing some pure strategy produces

utility higher than σ∗i , then σ
∗
i can not be a best response, whereas if playing

some pure strategy ai ∈ A∗i produces a worse outcome than σ∗i then a rival
strategy σ∗0i in which less weight is placed on strategy ai produces a higher
payoff than σ∗i and so, again, σ

∗
i can not be a best response (see Osborne

and Rubinstein Lemma 33.2 for a formal proof).
This has got good and bad implications. The good implication is that it

makes identifying the mixed strategy Nash equilibrium easy: if a player i
mixes over a set of actions A∗i , then the other players’ mixing must be such
that i is indifferent between choosing each element in A∗i .
Here is a simple example. Consider the battle of the sexes game in normal

form given by:
At the mixed strategy Nash equilibrium in which both players mix over

L and R, and letting σ∗II(L) denote the probability that II plays L and
letting σ∗II(R) = 1−σ∗II(L) denote the probability that II plays R, we must
have have:
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I
L R

II L 2,1 0,0
R 0,0 1,2

FIGURE 9.3. Battle of the Sexes

Expected utility to I from L (given σ∗II) = σ∗II(L).1 + (1− σ∗II(L)).0
=

Expected utility to I from R (given σ∗II) = σ∗II(L).0 + (1− σ∗II(L)).2.

Hence σ∗II(L).1 = (1−σ∗II(L)).2, and so σ
∗
II(L) =

2
3 . Similarly σ

∗
I(L) =

1
3 . It is worth constructing a set of examples and solving for the mixed
strategy Nash equilibrium to get the hang of using this technique. Try one
with more than 2 players. To deepen your understanding, try to solve for
a mixed strategy equilibrium of a Prisoners’ Dilemma. Having done this,
now try the following n person problem:

Exercise 109 Let N = {1, 2, ...n} and let each person have a strategy set
given by Ai = {L,R}; assume that players are permitted to randomize over
elements of Ai. Let utilities be given by:

ui(a) =

⎧⎨⎩ 0 if all players play L
1 if at least one player, including i, plays R
2 if at least one player plays R but i plays L

Find a mixed strategy Nash equilibrium of this game. How does it depend
on n? What kind of situation does this game describe?

Problem 110 For n odd solve for the symmetric mixed strategy Nash equi-
libria of the game in which

ui(a) =

⎧⎨⎩ 0 if all players play L
1 if at least n2 + 1 players, including i, plays R
2 if at least n2 + 1 players plays R and player i plays L

9.5.2 Mixing Over Continuous Pure Strategy Sets

So far we have mixed considered strategies of the form σi where σi is a
vector of length equal to the cardinality of the player’s pure strategy set.
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In many instances however, we consider games in which the player’s pure
strategy set is not finite–for example if the players strategy set is the set
Ai = [0, 1]. In these instances it may still be the case that a player mixes
using probabilities for some finite set of points in Ai; but in some cases this
may not be enough.
To get an intuition for why this might not be enough consider a penalty

shootout in the world cup, in which the striker can aim at any point in goal
(for example she chooses a point in A = [0, 1]2). The goalie can position
herself anywhere in A. She succeeds in catching the ball if she chooses
the same spot as the striker, but her probability of catching the ball is a
diminishing and convex function of how far she is from the struck spot. If
the goalie chooses a finite set of spots over which she randomizes, then the
striker can identify the spots in-between the goalie’s selected spots where a
shot is most likely to be successful, and it is over these spots that she will
randomize. But in that case, the goalie should also randomize over these
spots, not the original set of spots. The logic implies that no finite set of
spots will not the trick.
One way out is to consider a strategy as a probability distribution over

the strategy set. In this case the player’s strategy is a function, fi, defined
over A, with the property that f(a) ≥ 0 for all a ∈ A and

R
A
f(a)da = 1.

Given this reformulation of the strategy, the logic we discussed above for
identifying mixed strategies is the same. In particular, for any two strate-
gies, a and a0, in the support of fi, it must be the case that the player’s
expected utility from playing these strategies is the same. So, for example,
if there are two players playing with strategies fi, fj , with strategy space
A serving as the support for each player’s strategy, then it must be that
for each player:

Z
A

fj(a)ui(a
0, a)da =

Z
A

fj(a)ui(a
00, a)da for all a0, a00 ∈ A (9.1)

In the more general case where each player has a strategy set Ai but
only randomizes over some subset, A∗i of Ai, the corresponding condition
is then that for each player:

Z
A∗j

fj(a)ui(a
0, a)da =

Z
A∗j

fj(a)ui(a
00, a)da for all a0, a00 ∈ A∗i

and

for all a∗ ∈ A∗i : {a0 ∈ Ai|
Z
A∗j

fj(a)ui(a
0, a)da >

Z
A∗j

fj(a)ui(a
∗, a)da} = ∅

The trick then is to find, or to characterize, functions, f , such that these
conditions are true.
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Example 111 Consider a game with two players, N = {1, 2}, each with
strategy set Ai = [0, 1], and utility function ui =

½
1− ai if ai > aj
−ai otherwise

.

We could think of this as a lobbying game, in which each player can pay
a cost ai but they win only if their payment is strictly higher than the other
player’s payment. There is clearly no pure strategy Nash equilibrium since if
any player plays ai < 1, the other’s best response is to play ever-so-slightly
more than ai,in which case player i should in turn increase her offer, ever-
so-slightly more. If however, a player plays ai = 1, then the other player’s
best response is to play aj = 0; in which case the first player should drop
his move.
However a mixed strategy does exist in which players mix over the entire

range, using density function f such that if player i uses f , then player j,
is indifferent between all strategies in A, and hence is also willing to play
f . Now lets see how we can locate f .
Using Equation 9.1, we need that

R
A
fj(a)ui(a

0, a)da does not depend on
a0. Given the utility functions in this game, we need a function such that:

Z a0

0

fj(a)(1− a0)da+
Z 1

a0
fj(a)(−a0)da (9.2)

does not depend on a0. The first part of this expression is the probability
that player i “wins” using strategy a0 (multiplied by the payoff from winning
when a0 is used); the second part is the expected payoff from losing.
There are a few ways of working out characteristics of f , using the fact

that the value of expression 9.2 does not depend on a0. Most straightfor-
ward in this case is to note that

R a0
0
fj(a)(1 − a0)da +

R 1
a0 fj(a)(−a0)da =R a0

0
fj(a)da−a0. But this is exactly equal to 0 if f is such that

R a0
0
fj(a)da−

a0; or, defining the distribution function F in the normal way, if F (a0)=a0

for all a0 in A This is true for the uniform density function f(a) = 1
defined over [0, 1]. If you do not spot that, another approach is to note
that since expression 9.2 should not depend on a0, then its first derivative
with respect to a0, is 0. The first derivative of

R a0
0
fj(a)da − a0 is simply

fj(a
0) − 1. If this is equal to 0, we must have fj(a0) = 1, for all a0, and

hence fj(a) = 1.

Exercise 112 Create a game in which players have continuous action
spaces but in which no pure strategy equilibrium exists and identify a mixed
strategy Nash equilibrium in the game.

Problem 113 Can you find a game in which players have continuous ac-
tion spaces but in which no pure strategy equilibrium exists and in which
only one player mixes as a part of some Nash equilibrium?
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For an example where such strategies are used see Grossman and Help-
man’s Special Interest Politics, Section 9.3.1. For a ruch generalization of
the logic in the example given above ina model of candidate behavior un-
der rival voting rules, see Myerson, Roger. 1993. “Incentives to Cultivate
Favored Minorities under Alternative Electoral Systems.” American Polit-
ical Science Review, 87. In more general cases, solving for fi is often more
difficult than in this example and sometimes requires solving differential
equations.

9.5.3 Are Mixed Strategy Equilibria Believable?

In the last sections we saw that one property of mixed strategy Nash equi-
libria is that if a player places positive weight on more than one strategy,
then her Nash equilibrium strategy is not a unique best response to the
strategies of the other players.
Indeed there exists easier-to-implement-options (the pure strategies) that

each player likes just as much as her equilibrium strategy but that do not
themselves form part of an equilibrium. So why would a player chose to
mix? In some games, in equilibrium, the level of mixing for a player i may
not be determined by features of the game that affect i’s payoffs at all ;
rather i’s mixing may be driven by a concern of no interest to her: the
requirement that, in equilibrium, other players be indifferent over some set
of pure strategies. Such concerns then lead to some skepticism over the
solution concept.
Before leaving this solution concept let’s note one smart response to

this concern due to Harsanyi (1973; see also Fudenberg and Tirole 6.7.2).
Harsanyi shows that any mixed strategy equilibrium “almost always” cor-
responds to the limit of a pure strategy equilibrium in a sequence of slightly
perturbed games in which players have uncertainty over each others’ pay-
offs. In this case we can think of strategies as approximating unique best
responses by individuals in an uncertain world.
You should be able to convince yourself of the logic of this approach by

working through the next problem.

Problem 114 Consider the following penalty shootout game:
where ε is some arbitrarily small constant and CG is a random variable

that describes the goalie’s type (in particular, a slight edge on his ability
to catch the ball when he jumps left and the striker shoots left); given a
population of Goalie types, CG is positive half the time and negative half
the time; similarly CS describes the striker’s type and is positive half the
time and negative half the time. Each player knows his type (Ci) but only
knows the probabilities associated with the other player’s type. How would
you expect each player to behave. How would the play of the game look to
an observer as ε tends to 0?
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Goalie
L R

Striker L 0,1+εcG 1+εcS,0
R 1,0 0,1

FIGURE 9.4. Penalty Shootout

9.6 Correlated Equilibria

So far we have assumed that although a player’s equilibrium strategy may
depend on the strategies of other players (it should be a best response to
them), the strategies are are statistically independent in the sense that
Prob(a1, a2) = Prob(a1).Prob(a2)—that is, the randomizations themselves
are independent. For example consider the game in which N = {1, 2},
and for each i, Ai = {1,−1}, and ui : Ai × Aj → R1 = ai × aj . This is
a simple coordination game. Using the expected utility theorem and the
independence assumption, we can define the expected utility functions as

Ui(σi,σj) : Σi ×Σj → R1

= σiσj + (1− σi)(1− σj)− (σj(1− σi) + σi(1− σj))

= 1− 2σi(1− σj)− 2σj(1− σi).

A mixed strategy Nash equilibrium is given by σi = σj = .5, giving
expected utility of 0. This is Pareto inferior to the equilibria in which
σi = σj = 0 and σi = σj = 1. The reason that they do badly under the
mixed strategy equilibrium is because their independent randomizations
out some positive probability on the un-coordinated outcomes. They could
do better if their randomizations were not independent. As an extreme
case, imagine that in order to choose their strategy they each look at their
watches and play “1” if there are an odd number of seconds displayed
and “−1” if there is an even number displayed If the players take their
decisions at the same time —and have well synchronized watches–their
randomization is more likely to result in coordination. in effect, they are
both using some public randomization device.
The study of correlated makes use of the possibility of such public ran-

domization mechanisms to avoid Pareto dominated outcomes. In the case
of multiple Nash equilibria, using a public signal can readily be employed
to select among the equilibria. Since the strategies considered are them-
selves equilibria, it is an equilibria for players to implement the outcome
determined by the public signal. Hence, equilibria are selected by a coin
toss.
The notion gets more bite however in cases where the expected value of

some distribution over Nash equilibria is itself dominated by some other
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outcome that is not itself a Nash equilibrium. In this case, correlated signals
can still be used to weight players strategies towards outcomes that are not
themselves the result of a pure strategy Nash equilibrium. In this case we
do not require that a public signal in the sense that all players observe the
same signal; rather, it is enough if all players receives some private signal,
but that these signals are correlated.3

Formally we define a correlated equilibrium (adapted from Vega-Redondo,
2003) as follows:

Definition 115 A “correlated equilibrium” is a probability density p :
×i∈NΣi → [0, 1] such that for each i ∈ N , and for all mappings σ̃i :
Σi → Σi we have:

P
σ∈Σ

p(σ)ui(σ) ≥
P
σ∈Σ

p(σ)ui(σ̃i(σi),σ−i).

This means that if the public randomization device (privately) recom-
mends playing strategy σi to player, i, then player i’s, expected payoff from
playing this strategy—where her expectations are formed by considering the
probabilities of each profile being played—is better than what she would get
by deviating (playing some σ̃i(σi) instead of σi).

Exercise 116 (Aumann) Consider the following symmetric game (Fig-
ure 9.5). There are two pure strategy Nash equilibria, but symmetric ran-
domization between them leads to an expected payoff less than would be
obtained from (a, a). Is there a device that could allow players to do better,
using a correlated equilibrium, than they do under this symmetric random-
ization across Nash equilibria?

9.7 Focal Equilibria and Pareto Dominance

Consider the game represented in Figure 9.6.
In this game there are 3 pure strategy as well as mixed strategy equilibria

(find some mixed strategy equilibria!). But the Nash equilibrium solution
does not provide any guidance on which of these outcomes is more likely to
occur. In experimental settings however when this type of game is played,
the outcome (M,M) is selected as being more likely than the other out-
comes. Observations of this form have led to the notion of “focal equilibria,”

3For example, a dice may be rolled and Player 1 may be recommended to take action
a whenever the number that came up is greater than 3, and to take action b otherwise;
while player 2 may be recommended to take an action a whenever the number that came
up is a multiple of 2, and to take action b otherwise. In this case, if Player 2 is told
to take action a, he knows that the outcome was either 2, 4 or 6 and so he puts a 2/3
probability on player 1 also having been given the recommendation to do action a. If
however player 1 receives the signal to do a, she believes that the dice must have come
up 4, 5 or 6, so she also believes that there is a 2/3 probability on player 2 also having
been given the recommendation to do action a.
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FIGURE 9.5. Correlated Equilibria

I
L M R

II L 100, 100 0, 0 0, 0
M 0, 0 99, 99 0, 0
R 0, 0 0, 0 100, 100

FIGURE 9.6. Focal Point Equilibrium

a solution concept associated with Thomas Schelling (1960), in which an
outcome is not simply a Nash outcome but is one that distinguishes it-
self from all others and around which players may form their expectations
about the strategies that other players may employ. If there is a unique
such equilibrium we call it the focal equilibrium.
Warning: Use this idea with caution! The notion of which outcomes are

more “distinguished” is deeply problematic as different outcomes may be
uniquely distinguished along different dimensions of variation, yet we have
no bounds on what the relevant dimensions of variation are. They may,
for example, include seemingly irrelevant aspects of the description of the
game (such as the labels of the strategies or the ordering of the strategies
in a matrix) or they may depend on cultural factors that are not included
in the formal description of the game.
The Pareto efficient Nash equilibrium solution is a variation of the

focal equilibrium idea that restricts attention to aspects that are included
in the formal definition of the game, and in particular to features of the
players’ preferences over strategy combinations. A Nash equilibrium, σ, is
Pareto efficient relative to other Nash equilibria if there is no other Nash
equilibrium, σ0, such that all players prefer σ0 to σ.This removes possible
ambiguities associated with the focal point concept and may in some cases
lead to a tighter set of predictions then the Nash equilibrium concept. Hence
in the example below the principle would suggest that the outcome will be
(L,L) and not (R,R)–a finding consistent with the empirical literature.
However, the justification for selecting (L,L) as the solution relies on a

focal point argument and a behavioral assumption. It is still the case that
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if, for whatever reason, one player felt that another player was “very likely”
to play R, then we would expect that that player would play R.
Aha! In fact the seed of a rival solution concept—Risk Dominance—is con-

tained in the words “very likely”...

9.8 Strong equilibrium

The idea of a “strong equilibrium,” due to Aumann (1959) attempts to
narrow down the set of Nash equilibria by looking for criteria to dismiss
Nash equilibria from which some joint deviations are beneficial to more
than one player. Here is the formal definition:

Definition 117 A strategy profile σ∗ is a strong equilibrium if for every
subsetM of N , there is no sub-profile (σ0i)i∈M such that uj((σ0i)i∈M , (σ

∗
i )i∈N\M ) >

uj(σ
∗) for all j in M .

The following two properties follow very quickly from the definition:

• Strong equilibrium implies Nash equilibrium

• Strong equilibrium implies Pareto efficiency

These properties indicate how strong the equilibrium concept is. In fact
it is so strong that it may often fail to exist In particular, it does not exist in
games in which all Nash equilibria are Pareto dominated–as for example
in the Prisoners’ Dilemma. They also help us to see that the set of Pareto
efficient Nash equilibria (where efficiency is defined within the class of nash
equilibria) is not a subset of the set of strong equilibria.
You could imagine generating a series of weaker spin-off solution concepts

based on this idea; for example we could define a “k-strong equilibrium” as
above where the cardinality of sets M used in the definition are restricted
to be less than or equal to k. In this case, Nash equilibrium is simply a “1-
strong equilibrium” and a strong equilibrium is an |N |-strong equilibrium.
A second problem with the notion of strong equilibrium—with which we

deal more directly in our discussion of cooperative game theory—is that
insofar as it uses groups rather than individuals as a unit of analysis, it
requires somewhat different microfoundations to the Nash concept.

I
L R

II L 100, 100 0, 0
R 0, 0 1, 1

FIGURE 9.7. Pareto Dominance
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9.9 Coalition Proof equilibrium

The notion of a “Coalition Proof Equilibrium,” due to, Bernheim, Peleg
and Whinston (1987), also weakens the notion of strong equilibrium some-
what, by restricting the set of admissible deviations to those that are not
themselves vulnerable to deviations within the ranks of the deviators.
The idea is that a strategy profile σ∗ is coalition proof if there are no

profitable k-player deviations that themselves admit no profitable devia-
tions by any m players from among the k players for 1 ≤ m ≤ k. This
rules out a deviation by some pair from consideration, of one of the players
from the pair then has an incentive to deviate unilaterally from the devi-
ation; and it rules out deviations by trios that induce pairs or individuals
to deviate, and so on. From this we can see that the Nash equilibrium in
the Prisoners’ Dilemma is also coalition proof (since the coalition that can
improve upon it, is itself subject to deviation by its own members).

9.10 Perfect Equilibrium (Trembling Hand
Perfection)

Another approach, aimed at reducing the set of equilibria, is to use the idea
of trembles in a system—the possibility that players make mistakes, and ask
the question: is an equilibrium robust to trembles? If one Nash equilibrium
is robust, while another is not, this can serve as a good way to distinguish
between them.
A good way to think about the possibility of trembles is to require that an

acceptable strategy profile σ should have the property that it includes each
player’s best response to some (but not every) slightly perturbed version
of the game. This gives rise to the following definition:

Definition 118 Strategy profile σ is a “trembling hand perfect equi-
librium” if there exists a sequence (σn)∞n=0 À 0 that converges to σ such
that for each i, σi is a best response to each σn.4

If this is true then the strategy σ is robust to some set of trembles.5

Existence: A nice property is that trembling hand perfect equilibria exist
in finite games. Also, they correspond, in 2 player games, to the set of

4The notation “(σn)∞n=0 À 0” should be interpreted as: every element in σn (the set
of probability distributions at each information set) accorded strictly positive weight to
all actons in its support.

5Note that all that is required is that there exists some such sequence, the fact that
you can also find some sequence such that σi is not a best response to σn does not rule
out the possibility that σi is trembling hand perfect. Hence showing that σ is trembling
hand perfect is easier than showing that it is not.
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mixed strategy Nash equilibria for which neither players strategy is weakly
dominated. In the 2-player case this gives a very easy method for identifying
them.

9.11 Proper equilibrium

The notion of a “proper equilibrium” takes the notions of trembles one step
further. rather than allowing any type of tremble, it only consider trembles
that are in some way inversely proportionate to the payoff loss related to
the trembles. A formal definition follows:

Definition 119 An “ε-proper equilibrium” is a totally mixed strategy pro-
file σε such that, if ui(si,σε−1) < ui(s

0
i,σ

ε−1) then σεi (si) ≤ εσεi (s
0
i). A

“proper equilibrium,” σ, is any limit of ε-proper equilibria as ε tends to
0.

We know (Myerson 1978) that proper equilibrium exist in finite strategic
form games.
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10
Solution Concepts for Evolutionary
Games

The basic idea behind equilibrium concepts in evolutionary game theory
is that strategies are selected based on how well they have performed in
the past or based on how they are expected to perform given the present
state of the world, rather than on rational beliefs about the play of others
in future periods. Backwards induction for example typically plays little or
no role, nor do beliefs about the best reply functions of other players. In a
way these models assume that players exercise parametric rationality rather
than strategic rationality (the environment is choice theoretic rather than
game theoretic), but all agents do so in environments in which they respond
to the past (and under some interpretations, the expected) actions of others,
treating these actions as part of the givens of their choice problem–the
state of the world– rather than as something that depends on their own
choice.
There are many ways to model the way that individual actions affect

the state of the world. It could be for example that we think of a popu-
lation of players playing particular combinations of strategy. We can then
introduce different types of rules that allow the relative frequency of plays
of a given strategy yo rise if that strategy does “well” relative to other
strategies. Different stories can be used to justify this, one is very literal–
that people playing these strategies are successful and have relatively more
offspring, another might reflect the relative importance of a player in the
population, such as his market share or the extent of his territory or voting
rights, another might work through emulation–that when players do well,
other players copy them. To get a flavor of the logic we begin with some
relatively simple solution concepts closely related to the Nash equilibra we
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have already seen; we then consider teh ESS solution concept and end with
a brief discussion of stochastic stability.

10.1 Resistance, Risk Dominance and Viscosity

For the game in Figure 9.7 above let µI denote player I’s belief regarding the
probability that II plays R. Note now that L would be an optimal strategy
for I for any values of µI in the range [0,

100
101 ], choosing R is only optimal

for the “smaller” range [100101 , 1]. Hence it seems that a wider range of beliefs
support (L,L) than support (R,R). It turns out that this consideration
can be used to derive alternative solution concepts.
In one approach this intuition corresponds to the notion of the “resis-

tance” of an equilibrium. The idea can be motivated by an evolutionary
model of strategy selection. Assume that a large set of agents plays a sym-
metric two player game Γ in which there are k rival equilibrium strategy
profiles, {σ1,σ2, ..., σk}. Assume that some proportion of agents, µi is pro-
grammed to play the strategies associated with each σi. Then (again as-
suming von Neumann-Morgenstern utility) a player of type i has expected
utility given by:

Pk
j=1 µ

iui(σ
i,σj). In evolutionary games of this form it

is assumed that given some initial distribution of types, the distribution
evolves after each round of play with each group growing in proportion to
its expected payoff.
We are now ready to describe the resistance of one strategy against

another. Formally, the “resistance” of strategy σi against σj is given by
the largest number µ ∈ [0, 1] such that for all i ∈ N :

ui(σ
i, µσj + (1− µ)σi) ≥ ui(σj , µσj + (1− µ)σi)

In words: µ is is the maximal fraction of σj types that can be introduced
into a σi population such that the reproductive capacity of the σis is at
least as good as the reproductive capacity of the σjs. If it is the case that
when the proportion of σj types is less than µ we have that the inequality
in the last expression is strict, then this may provide grounds for us to
expect the σj types to “drive out” the σj types over time.1

Hence, in this context the notion of resistance can be used to rank pairs
of strategies against each other. In the case where each player only has two
pure strategies available to her in Γ, we say that σi “risk dominates” σj

if the resistance of σi against σj is greater than the resistance of σj against
σi. An equilibrium then is “risk dominant” if it is not dominated by any
other equilibrium.

1Although establishing such a claim formally requires a richer sescription of the game
and the set of all strategies employed in the initial generation.
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It is easy to check that the Pareto optimal outcome in the game in Fig-
ure 9.7 risk dominates the Pareto inferior outcome. As the next example
shows however, the notion of risk dominance is independent of Pareto dom-
inance: of two Nash equilibria, the risk dominant outcome may be Pareto
dominated by the risk dominated outcome.

I
L R

II L 10, 10 -1000,0
R 0,-1000 9, 9

FIGURE 10.1. Risk Dominance

Problem 120 For Figure 10.1, calculate the resistance of (L,L) relative
to (R,R). Calculate the resistance of the mixed strategy equilibrium relative
to each of these pure strategy equilibria.

Even in the context of risk dominance, Pareto optimality has some ap-
peal; in evolutionary settings a simple way to reintroduce a role for Pareto
dominance is to loosen the assumption that agents meet randomly. In par-
ticular assume that there is an element of viscosity in the sense that players
are more likely to meet players within their own subgroup (herd, ethnic
group, party...) than they are to meet agents outside their group. If this is
the case, then we may expect that given some initial random distribution of
strategy types across subgroups, most subgroups will end up playing uni-
formly risk dominant strategies, but those that do end up playing Pareto
dominant (although possible risk dominated) strategies will grow faster in
the long run and eventually dominate overall. Following Myerson, we con-
struct a viscosity parameter δ and say that a symmetric strategy profile
σ of a two-person symmetric game is a “δ-viscuous equilibrium” if for
each pure strategy a ∈ A:

if σi(a) > 0 then a ∈ argmax
a0∈A

[u(a0, (1− δ)σi + δa0)]

And so if a is employed by an individual in a group then it should be
a best response in a situation in which that individual encounters other
individuals in her group with probability δ and other members of the pop-
ulation (that employ σi) with probability 1− δ. Clearly as δ goes to 0 this
condition becomes a necessary condition for symmetric Nash equilibrium.
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10.1.1 Identifying Risk Dominant strategy profiles

The following fact is useful for the class of two person, two strategy coordi-
nation games representable by Figure 10.2 and in which (L,L) and (R,R)
are the only two pure strategy Nash equilibria.

I
L R

II L a11, b12 a12, b12
R a21, b21 a22, b22

FIGURE 10.2. General 2× 2 coordination game

In these cases we have that (L,L) is risk dominant if it maximizes the
product of the gains from unilateral deviation, that is, if (a11 − a21)(b11 −
b12) ≥ (a22−a12)(b22−b21). (See H. Peyton Young, Chapter 4 and Harsanyi
and Selten 1988)

Problem 121 Prove it.

Remark 122 We have a solution concept that identifies particular Nash
equilibria based on the range of expectations about the behavior of other
players that may support it. We motivated this by considering an evolu-
tionary process. But it turns out that the risk dominant equilibrium solu-
tion concept has equivalency properties with another solution concept, sto-
chastically stable states, that is based on adaptive learning in stochastic
environments.2

10.2 Evolutionarily Stable Strategies

We now consider perhaps the most important evolutionary solution concept
in the study of normal form games: the “evolutionary stable strategies.”.
The idea is to consider a large population of agents that all play a given
strategy σ and ask how will this population fare if a “mutant” strategy
σ0 is introduced. Again we assume that players play two player symmet-
ric games after being paired through some random process. The stability

2For more on this see H. Peyton Young, 1998.
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requirement is this: the stable strategy should do strictly better than the
mutant strategy on average and so the mutant should die out over time.
Specifically, this means that given the introduction of fraction ε of mutants,
for σ to be an Evolutionarily Stable Strategy (ESS), we require that
for all σ0 and for ε sufficiently small:

ε.u(σ,σ0) + (1− ε)u(σ,σ) > ε.u(σ0,σ0) + (1− ε)u(σ0,σ) (∗)

Now if the profile in which all players play σ is not a Nash equilibrium
then there exists some σ0 for which (1−ε)u(σ,σ) < (1−ε)u(σ0,σ) and hence,
for ε sufficiently small condition (∗) can not be satisfied. So a necessary
condition for satisfying (∗) is that the profile in which all players play σ be
a Nash equilibrium. Studying condition (∗), we can then write the necessary
and sufficient conditions as follows:

• Case 1: If σ is not the unique best response to itself and so for
some σ0 6= σ, (1 − ε)u(σ,σ) = (1 − ε)u(σ0,σ) then a necessary and
sufficient condition for σ to be ESS is that ε.u(σ,σ0) > ε.u(σ0,σ0), or
equivalently, u(σ,σ0) > u(σ0,σ0).

• Case 2: If σ is the unique best response to itself then we have that
(1− ε)u(σ,σ) > (1− ε)u(σ0,σ) and so, choosing sufficiently small ε,
we can dispense with the condition that u(σ,σ0) > u(σ0,σ0).

The conditions from these two cases can be summarized in a single neces-
sary and sufficient condition: σ is an ESS if and only if u(σ,σ0) > u(σ0,σ0)
for every σ0 that is a best response to σ (but which is not the same as σ).
The ESS notion is a strong solution concept and it may fail to exist. Fur-

thermore, although we already had that every evolutionarily stable strategy
profile is nash, we also have that is proper.
Identifying ESS’s. From the condition just given, to identify an ESS

you first need to locate the set of symmetric Nash equilibria. A good next
step is to check to see whether for any of these Nash equilibria each element
of the equilibrium is a unique best response to the other elements, if so
then that those elements are ESS. (Note that there is no point trying this
shortcut if the equilibrium in question is not a pure strategy since as we
saw above that mixed strategies are never unique best responses (unless
they are pure)). If the equilibrium is not a unique best response then you
need to search for strategies σ0 among the set of best responses to σ for
which u(σ,σ0) ≤ u(σ0,σ0)

Exercise 123 For the game in Figure 10.3, identify all the Nash equilibria
and identify which (if any) of these are ESS.
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I
L M R

II L 1, 1 3, -3 -3, 3
M -3, 3 1,1 3, -3
R 3, -3 -3, 3 1, 1

FIGURE 10.3. Find the ESS

10.3 Stochastically Stable Equilibria

The final solution concept that we shall consider for normal form games
is the notion of “Stochastically Stable Equilibrium.” One critique brought
to bear on ESS is that it only considers isolated mutations–that is, the
solution concept is useful for situations where there is a small error, but does
not consider the possibility that such errors can cumulate. There might not
be simply instances of isolated mutations that eventually die out, but rather
a continuous process of perturbations; in such cases these accumulated
effects may have, albeit with low probability, large effects on a system.
A stochastically stable equilibrium is a state, P , with the property that

in the long run it is ‘almost certain’ that the system will lie in open set
containing P as the noise tends slowly towards 0 (Foster and Young, 1990).
A stochastically stable set, SSS, is a set of states, S, such that the system
will lie in every open set containing S as the noise tends slowly towards 0.
We are used to thinking of equilibria as being a feature of profiles of

strategies. For our purposes here, states are not strategy profiles, but they
are functionas of a strategy profile that summarizes the relevant informa-
tion. Assume that there exist k pure strategies. Let a state at time t be
given by a k-dimensional vector, s(t) = {s1(t), s2(t)...sk(t)} where each
element sj(t) reports the relative number of agents playing strategy sj .
Now, assume that due to random matching (or other stochastic pres-

sures) there is uncertainty over the value of sh(t + 1), can be constructed
usingMarkov Chain Theory with respect to discrete time Markov processes.
To do this we now let pss0 denote the probability of moving from state s

to state s0.
Clearly we can now populate a k × k matrix P with elements pss0 . We

assume that P is time invariant (time homogenous).
Let µt be a probability distribution over states in time t. Hence µt lies

on the unit simplex. For example, if the state is s1 in period 0, then µ0 =
(1, 0, ..., 0).
In this case we can work out the distribution of states in time 1. It is

given simply by: µ1 = µ0P . In our example with µ0 = (1, 0, ..., 0) we have
µ1 = µ0P = (p00, p01, ..., p0k).
Repeating the process we have that the distribution at time 2 is µ2 =

µ1P . In our example we have that:
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µ2 = (p00p00 + p01p10 + p02p20..., p00p01 + p01p11..., ..., p00p0k + p01p1k...)

Which is clearly more compactly, and more generally, written as µ2 =
µ0PP or µ0P

2.
More generally, at time t we have that the distribution of states is µ0P

t.
Using these ideas we now define a useful set of terms:

• The asymptotic frequency distribution of a process beginning at
µ0 is µ0P

∞.3

• A process is ergodic (not path dependent) if µ0P∞ does not depend
on µ0

• State s0 is accessible from s0 if for some t, (P t)ss0 > 0

• States s and s0 communicate if each is accessible from the other

• A set of states is a communication class if each pair communicates

• A set of states is a recurrent class if it is a communication class
from which no state outside the class is accessible

• A state is a recurrent state if it is in a recurrent class; otherwise it
is transient

• A state is absorbing if it is a single recurrent class

• A process is irreducible if there is only one recurrent class, consisting
of the entire state space.

• A distribution, µ, is a stationary distribution if µP = µ

• let Ns denote the state of integers n > 0 for which there is a positive
probability of moving from s back to s in n periods. If the greatest
common divisor of Ns is 1 for each s, then the process is aperiodic.
As a counter example: a process that returned a state to itself with
positive probability only in every second period would be periodic.

The following features are useful:

• Stationary distributions exist, and, furthermore they are unique if
and only if P has a unique recurrent class.

• If P has a unique recurrent class, then the stationary distribution µ is
also the time average asymptotic behavior of the process, independent
of the initial state.

3µP t converges almost surely at t→∞.
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• If however, P has more than one recurrent class, then it is non-
ergodic.

• If P is irreducible and aperiodic the stationary distribution µ not
only approximates time average behavior but also approximates the
actual state for large t.

For notions of stochastic stability we want to allow for the possibility
that errors accumulate; in particular we want to allow for the possibility
that movements from anywhere to anywhere are possible. Perhaps not in
any given period, but certainly over time.

Definition 124 A process is a “Regular Perturbed Markov Process”
of the process P 0 if (i) for some ε∗, P ε is irreducible for every ε ∈ (0, ε∗]
(ii) lim

ε→0
P ε
ss0 = P

0
ss0 and (iii) if P

ε
ss0 > 0 then for some r(s, s

0) ≥ 0, we have

0 < lim
ε→0

P ε
ss0

εr(s,s0) <∞.

The term r(s, s0) describes the resistance of the move from s to s0. It can
be shown that if such an r(s, s0) exists it is uniquely defined. Furthermore
r(s, s0) = 0 if and only if P 0ss0 > 0. that is there is no resistance between a
and b if, even without any noise you can move freely from a to b.
Note that since P ε is irreducible it has a unique stationary distribution

and hence a unique stationary distribution that is a solution to µεP ε = µε.
We are now (finally) ready to define stochastic stability:

Definition 125 (Young 1993) A state, s, is stochastically stable if
lim
ε→0

µε(s) > 0

The best way to get a feel for stochastic stability is to work through
some examples. Here I discuss one simple example and leave a slightly
more involved one as a problem

Example 126 Consider a process with only two states. The transition ma-

trix, P, is then a 2 × 2matrix given by: P =

∙
p11 1− p11
p12 1− p12

¸
. Assume

that P is aperiodic and irreducible. Note that aperiodicity rules out matri-

ces like
∙
0 1
1 0

¸
, irreducibility rules out matrices like

∙
1 0
0 1

¸
. Observe

that if µ = [µ1, 1 − µ1] is a stationary distribution over states 1 and 2,
then

£
µ1 1− µ1

¤ ∙ p11 1− p11
p21 1− p21

¸
=
£
µ1 1− µ1

¤
or equivalently:

µ1p11 + (1 − µ1)p21 = µ1 and µ1(1 − p11) + (1 − µ1)(1 − p21) = 1 − µ1.
Although this looks like two distinct equations, manipulation of the second
one should convince you that these are both the same equation. Hence we
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have one equation in one unknown. Solving for µ1 gives µ1 =
p21

(1−p11)+p21 .
This then is the stationary distribution over states. What does P∞ look
like? It is worth multiplying P out a number of times to get a sense of
how its shape evolves from P 1, .P 2..., P t. However, since P is aperiodic
and irreducible we already know that it converges and we also know what
it must converge to! Since (from ergodicity) for all µ0, µ0P∞ = µ, it must
be the case that each row of P∞ is the same. Furthermore it must be that
P∞11 = µ1 and P∞12 = 1− µ1. Hence

P∞ =

"
p21

(1−p11)+p21 1− p21
(1−p11)+p21

p21
(1−p11)+p21 1− p21

(1−p11)+p21

#
. (What then is P∞P?) With

P irreducible (p11, p22 6= 1) and aperiodic (p11 + p22 6= 0) it is easy to
check from µ1 =

p21
(1−p11)+p21 , that µ1 > 0 and µ2 > 0. Hence from our

definition we can see from Definition 125 that because lim
ε→0

µε = µ, both

states 1 and states 2 are stochastically stable. This follows because we have
assumed irreducibility without introducing any noise at all. The somewhat
unsatisfying result then is that in systems like this where without noise there
is no stability (there are no recurrent classes except for the whole state),
everything is stochastically stable.
The real bite of SSS however comes for situations in which there are too

many stable equilibria or the unperturbed game, not too few. That is, if P is
not irreducible and consists instead of a couple of recurrent classes. In such
cases we have multiple equilibria. We now want to know: can stochastic sta-
bility distinguish between these cases? The good news is that it can. Assume

that there are two equilibria. In this case we have P =
∙
1 0
0 1

¸
. Clearly,

P does not have a unique recurrent class and so there is not a unique sta-
tionary distribution µ. Now we introduce the noise. Define the perturbed

matrix P ε =

∙
1− ε|N| ε|N |

1− (1− ε)|N | (1− ε)|N|

¸
. The idea of this perturbation

(many different perturbations are imaginable) is that from state 1 you need
a compounding of |N | errors–everybody has to make a mistake–in order
to move to state 2. If the probability that one person makes an error is ε,
then |N | (independent) errors will occur with probability ε|N |. However a
shift from state 2 to state 1 only requires that one person makes an error:
this occurs with probability 1− (1− ε)|N |. (Note, you should think of other
types of relevant perturbations and see how they would affect the outcome
to follow)
We now need to know: Is P ε a regular perturbed Markov process of

P 0? The answer is “Yes” since (i) for ε ∈ (0, ε∗], the process is irreducible
as long as ε∗ ∈ (0, 1) (ii) clearly lim

ε→0
P ε
ss0 = Pss0 and, finally, although

perhaps less obviously, (iii) if P ε
ss0 > 0 then for some r(s, s

0) ≥ 0, we have
0 < lim

ε→0
Pε
ss0

εr(s,s0) < ∞. In particular the resistances are given by: r(1, 2) =
|N | and r(2, 1) = 1. Note that the proposed resistances here reflect directly
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the number of errors it takes to move between states. To check that these
reisstances work for the definition, note that Pε12

εr(1,2)
= ε|N|

ε|N| = 1, which does

not depend on ε, hence lim
ε→0

Pε
ss0

εr(s,s0)
= 1. Similarly P ε22

εr(1,1)
= 1−(1−ε)|N|

ε =

α1ε
|N|+α2ε|N|−1+α3ε|N|−2...α|N|ε

ε , which converges to α|N | > 0. So far so good,
we have our perturbed process.
We can now use the work we have already done to work out what µε looks

like. In particular we have µε1 =
pε21

(1−pε11)+pε21 =
1−(1−ε)|N|

(1−(1−ε|N|))+1−(1−ε)|N| =
1

1

α1+α2ε
−1+α3ε−2...α|N|ε−|N|+1

, which for N > 1 converges to 1 as ε tends to

0. Hence all the mass goes on to the first state–the state with the higher
resistance. For N=1 µε1 =

1−(1−ε)|N|

(1−(1−ε|N|))+1−(1−ε)|N| =
ε

ε+ε = .5. We confirm
our calculations rapidly with a modelling of P ε and µε in Mathcad (figure
10.4).

We can define a family of perturbed matrices as follows: P ε n,( ) 1 ε
n

−

1 1 ε−( )n
−

ε
n

1 ε−( )n

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

:=

Here is an example with ε = .4 and N=2 P .4 2,( )
0.84

0.64

0.16

0.36
⎛
⎜
⎝

⎞
⎠

=

Multiplying this matrix by itself illustrates the convergence: P .4 2,( )50 0.8

0.8

0.2

0.2
⎛
⎜
⎝

⎞
⎠

=

Note that with ε =.4 a lot of mass goes onto the first state; the question is how does that
change as epsilon heads towards 0. To find out we define a function that gives the 
solution to mP(ε,Ν)=m

m .1 .1( ):= Given m P ε n,( )⋅ m mT 0> mT∑ 1 f ε n,( ) Find m( )0 0,:=

Now we graph the solution as epsilon heads to 0 for different values of N. (don't forget to throw in 
range variables. Note I also set the axes on the graph so that 0 is on the right hand side

ε 0 .01, .4..:=

00.050.10.150.20.250.30.350.4
0

0.5

1

f ε 1,( )
f ε 2,( )

f ε 3,( )

ε

FIGURE 10.4.
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Problem 127 In Mathcad or otherwise, study a process with 3 players
playing the game in Figure 9.7. Assume that in each period one player
is chosen at random and that with probability 1 − ε this player chooses
his best response to the actions of the other two players, with probability
ε he chooses the other strategy. There are four states in this game, one
with nobody playing left, one with one, one with two and one with three.
Write out the transition probabilities for the 4× 4 transition matrix. Find
the stochastically stable state. How would the process change with small
changes in the payoffs for each action?

Exercise 128 Consider any normal form game that interests you in which
there exists more than one Nash equilibrium (or any dynamic process in
which actors can take actions at any stage to alter the state). For example
a public goods provision game (n-player chicken) with heterogenous actors
or a Battle of the Sexes game with different weights across players in the
value they play on sociabilty. Model it as a stochastic dynamic process in
which agents draw random samples of observations and play best responses
to these samples; graph the evolution of the process over time. Find a sum-
mary statistic for a single process an graph the distribution of this summary
statistic.

Problem 129 Same as above but allow for the sample from which players
learn to be non-random. For example players might “talk” only to people
that live near them or think like them. They may even place different weights
on the “representativeness” of different people when calculating their beliefs
about the strategies of other agents...

10.4 Readings for the week after next

Next week we will look at tools for studying the general class of exten-
sive form games and for the special case of “repeated” games–in which a
normal form game is repeated many times. If you are uncomfortable with
the notion of subgame perfect equilibrium, read section 6.2 of Osborne and
Rubinstein before beginning the week’s readings, it’s just 5 pages long but
provides the definitions you need and will complement the notes on the
one deviation property. Of the assigned readings, read Muthoo first, then
Ferejohn and then the Osborne and Rubinstein Chapter 8. In Muthoo,
concentrate on pages 42-50. Muthoo describes a classic non-cooperative
bargaining game. Read the set up of the model first and write down the
game tree for a finite version of the game (say with 2 periods). Try and
work out the subgame perfect equilibrium of the two period game: who
gets the bigger share of the pie? How much bigger is it? To get a sense of
what the solution would be for the infinite version you may now want to
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add on a third period (to make life easier add the third period to the front
of the game tree rather than to the back). How does the outcome change?
Now read the solution to the game and check your intuitions. You will see
that Muthoo also provides a uniqueness result. Before reading the proof
of this result think of how you would go about proving uniqueness. Part
3.2.3 is lighter reading but provides a good example that you may wish to
follow in your papers of how to analyze a model that you have constructed.
It also provides ammunition for our mythical debate on cooperative versus
non-cooperative approaches. The Ferejohn model asks how electorates are
able to use elections to control politicians, given that politicians are not
required to do what they said they would do before they got elected. Think
about what a reasonable answer to that question might look like before
reading the model. In terms of picking up tools, the main thing to look
out for in reading this piece is the way terms are used (in this case V O,
V I) to represent the value of future streams of utility, conditional upon
optimal behavior by all actors. The key results in Chapter 8 of Osborne
and Rubinstein that we will discuss are in 8.5. You should note however
that the results in this section are with respect to Nash equilibrium and
not subgame perfect Nash equilibrium. If you are concerned by this, do
continue to read section 8.8.
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11
Solution Concepts for Extensive Form
Games

11.1 The Problem With Nash Equilibrium in
Extensive Form Games

As before, we treat the set of strategies as the domain of preference re-
lations, utility functions then map from Σ into R1. In games of perfect
information, a given combination of strategies is uniquely associated with
a terminal history; hence we can treat the set of strategy profiles as the
domain of the individuals’ preference relations.
Assuming that preferences can be represented by a utility function, we

say that a strategy profile σ is a Nash equilibrium if u(σi,σ−i) ≥
u(σ0i,σ−i) for every strategy σ

0
i and for every player i ∈ N .

Our first observation is that we can apply the concept of Nash equilibrium
to the context of extensive form games. that’s the good news.
The bad news is our second observation: Nash equilibrium is an unsatis-

factory solution concept in these contexts because, by ignoring the sequenc-
ing of actions, it excludes considerations of a simple version of what’s called
the principle of “sequential rationality”–that a player’s strategy should
be optimal at every decision node. The following simple game illustrates
the problem and why we should care.

In the game depicted in Figure 11.1, an armed group decides whether
or not to kidnap the president. Congress responds by deciding whether or
not to negotiate with the group. Now, the following is a Nash equilibrium:
the armed group decides not to kidnap the president, the congress refuses
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 Armed Group

Congress 

Kidnap the 
President  

Don’t kidnap 
the president 

Refuse to 
Negotiate with 

Terrorists 

Negotiate with 
Terrorists 

-2, -2 2, -1 0, 0 

FIGURE 11.1. One Shot Kidnapping Game

to negotiate in the event that the president is kidnapped. This is a Nash
equilibrium because, conditional upon the other player’s strategy, neither
player has an incentive to deviate: in particular the Congress does not have
an incentive to change their strategy because, in equilibrium they never in
fact have to choose whether or not to negotiate.
This solution is unsatisfactory however because we would expect that if

the armed group were in fact to kidnap the president, then the Congress
would be better off negotiating. This line of thought however requires that
we consider deviations by both player, but by definition the concept of Nash
equilibrium only requires us to check that no single player has an incentive
to deviate.
The logic suggests however that a more plausible outcome is that the

president is kidnapped and the congress negotiates. This is also a Nash
equilibrium, but one in which no player has an incentive to deviate at
any stage in the game tree. It seems then that perhaps the problem is
not with the whole class of Nash equilibria but with determining which
Nash equilibria are consistent with sequential rationality. We have then a
problem of refinement of the Nash equilibrium concept.
The first, and most basic refinement, is subgame perfection...

11.2 Subgames and Subgame Perfection

The logic that we discussed for using backwards induction in games of
perfect information to identify sequentially rational strategies provides the
basis for a solution concept known as “subgame perfection. ” It makes sense
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to introduce the concept here because the solution concept is defined for
games of imperfect information as well as games of perfect information. We
begin by defining the notion of a subgame formally:

Definition 130 A subgame of an extensive form game is a subset of the
game with the following properties: (i) it begins with an information set that
contains a single decision node, it contains all successors to these nodes and
contains no other nodes (ii) if decision node x is in the subgame, then all
nodes in the information set of x are also in the subgame.

Problem 131 Draw a game tree and identify a subset of the game tree
where condition (i) above is satisfied but condition (ii) is not.

Given this definition we have that every subgame is itself an extensive
form game (of perfect or imperfect information). We are now in a position
to define subgame perfection formally:

Definition 132 A profile of strategies, σ, in an extensive form game, Γ, is
a “subgame perfect Nash equilibrium” if it induces a Nash equilibrium
in every subgame of Γ.

By “σ induces a Nash equilibrium in a subgame” we mean that if we
create a strategy profile σ0 that specifies the same actions by all players
as σ at all nodes shared by the game and the subgame, then σ0 is a Nash
equilibrium of the subgame.
Our example of the kidnapping game given above demonstrates that not

all Nash equilibria are subgame perfect Nash equilibria; however from the
definition of subgame perfection we have that all subgame perfect Nash
equilibria are Nash equilibria (why?).
For finite extensive form game with perfect information a useful property

of the subgame perfect solution concept is that it exists:

Theorem 133 (Kuhn) Every finite extensive form game with perfect in-
formation has a subgame perfect equilibrium

11.3 When Subgame perfection is not enough

So we have a better solution concept than Nash equilibrium for extensive
form games. So far so good. It turns out however that in games of imper-
fect information, requiring subgame perfection is not sufficient to satisfy
sequential rationality.
Consider the problem illustrated in Figure 11.2.
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Armed Group 

Congress 

Kidnap the 
President in the 

Monday

Don’t kidnap 
the president 

Refuse to 
Negotiate with 

Terrorists 

Negotiate with 
Terrorists 

-2, -2 2, -1 

0, 0 

Congress

Refuse to 
Negotiate with 

Terrorists

Negotiate with 
Terrorists 

-2, -2 2, -1 

Kidnap the 
President in the 

Tuesday

FIGURE 11.2.

This problem is identical to the previous problem except for some ir-
relevant uncertainty over the timing of the capture of the president. The
problem though is that, from the point of view of analyzing the game, this
uncertainty prevents us from employing backwards induction: the problem
is that because of the new information set there are no subgames to this
game (other than the game itself). In such contexts we may often have
to specify beliefs regarding which node player’s believe they are at, and
calculate their optimal actions conditional upon their beliefs; we can then
require that player’s be sequentially rational given their beliefs. in taking
steps of this form we are entering the world of subgame perfect equilibrium
refinements. Solution concepts that refine the idea of subgame perfection
include, “fuzzy subgame perfection,” “trembling hand perfection,” “perfect
Bayesian equilibrium,” and “sequential equilibrium.” We leave off the dis-
cussion of these concepts until after we have discussed tools for modelling
how player’s learn during the course of a game.
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12
Solving Extensive Form Games

12.1 Backwards Induction

12.1.1 Procedures and Properties

The procedure that we use to identify sequentially rational Nash equilib-
ria in finite extensive form games is called “backwards induction.” The
procedure is as follows:

1. Calculate optimal actions at the final decision nodes of the game tree

2. Then calculating optimal actions in the next to last set of nodes
conditional upon the optimal actions from the final set of nodes being
implemented.

3. Continue in this manner right up the game tree until there are no
choices left to make.

4. At this point we will have identified a set of actions to be taken at
each decision node in the game tree

Three properties of this procedure are worth knowing (see: “Zermelo’s
theorem”):

1. In a finite game of perfect information, every strategy that can be
identified using backwards induction is a Nash equilibrium.

2. In every finite game of perfect information there is at least one Nash
equilibrium that can be identified using backwards induction.
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3. If no player has the same payoffs at any two terminal nodes then
there exists a unique Nash equilibrium that can be identified using
backwards induction

.

12.1.2 Backwards Induction with Continuous Action Spaces

Before introducing the closely related (but more general) notion of subgame
perfect equilibrium, let’s consider how to apply backwards induction in
situations where players have continuous strategy sets. In such situations
we often do not use trees to model the game explicitly, yet the principle of
backwards induction is basically the same: simply consider the final stage
of the game, work out the optimal strategies at the final stage conditional
upon whatever actions have been taken before (even though you do not
yet know what those values are) and then work out optimal strategies at
earlier stages, taking into account that optimal choices at later stages can
be foreseen. Here’s a simple example:
An investor has to choose some share, α, of $1 to invest in a country.

The government then decides what tax rate, t ∈ [0, 1], to apply to the
investment. The investor’s payoff is given by α(1− t) + 1−α2

2 –that is, the
investor gets the non-taxed income from its investment, given by α(1 −
t), but loses the opportunity cost of investing elsewhere; its gains from
investing in some other project are given by 1−α2

2 . The government’s payoff
is given by 1

α ln(tα) + ln((1 − t)α), that is, it gains directly from the tax
revenue but also benefits from the direct returns to the country.1

Solving the government’s problem first (first, because they move last) we
choose t to maximize 1

α ln(tα) + ln((1− t)α). First order conditions yield:
α

α(tα)−
α

(1−t)α = 0 and so
1
tα =

1
1−t . Solving for t (hopefully) gives t =

1
1+α .

Note that for α ∈ [0, 1] this lies between 1
2 and 1 and it is decreasing in α:

if only a small amount is invested the tax rates will be high, but they fall
as more is invested. The key thing to note here is that we find a solution
to t that conditions upon α even though we do not yet know the value
of α. Turning now to the investor’s decision we want to find the α that
maximizes α(1−t)+ 1−α2

2 . The key here is that we do not simply maximize
this function with respect to α. Rather we take account of the fact that the

1Note that this utility function is chosen for simplicity not for its realism. For α and
t strictly beween 0 and 1 the first part is increasing in t and (less obviously, α). The
second part is increasing in α but decreasing in t. This captures the effects the mixed
motives we may expect a government to have with regard to the direct and indirect
benefits of investment. The key problems with the utility function is that they are much
too specific, and, more of a technical problem, that it is not defined if α or t are 0 (this
can be fixed by adding an arbitrarily small term inside the ln function).
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investor knows that whatever α she chooses, this choice will be observed
by the government and will affect the government’s choice of tax rate: the
more he invests the lower will be the tax rate on his investment.
So, looking ahead, a strategic investor sees her problem as finding an

α to maximize α(1 − 1
1+α) +

1−α2
2 = α2

1+α +
1−α2
2 . First order conditions

are given by: 2α
1+α −

α2

(1+α)2 − α = 0. The solutions to this are given by

α = 0,
√
5−1
2 and −

√
5−1
2 .2 Among these the investor’s utility is maximized

at α∗ =
√
5−1
2 .3

With the investor’s action now fully determined, we can return to deter-
mine the tax rate that the government sets in equilibrium. It is given by
t∗ = 1

1+α∗ =
1

1+
√
5−1
2

=
√
5−1
2 .

Remark:

Substituting for stage t decisions before maximizing at t−1 is key.4 This is
the most important principle of backwards induction. If the investor simply
maximized α(1− t) + 1−α2

2 (thereby ignoring the effect of α on t) then she
would choose α = 1−t. Together with the condition t = 1

1+α we would then
have a solution at a = 0 and t = 1–and hence we would underestimate
the amount of investment and overestimate the amount of taxation. Doing
this would get the maths wrong and the politics wrong.

Problem 134 Find the solution to this game if the government can set the
tax rate first and the investor then chooses how much to invest. Who does
better and who does worse? What are the policy implications? α = 1 − t,
1
α ln(tα) + ln((1− t)α),

1
1−t ln(t(1− t)) + ln((1− t)(1− t))

Exercise 135 Design a two person game extensive form game of perfect
information in which each person can take an action from some continuous
(possibly multidimensional) action set and the utility to each is a function
of the actions of both. For example in the spatial model or in a trade model
you could imagine that each player controls one dimension of policy (such as
domestic tariffs) but both care about both. Choose some utility functions and

2That α = 0 is a solution can be seen immediately. Assumig α 6= 0 and fividing across
by α reduces the first order condition to the quadratic 1 − α − α2 = 0 which is easily
solved to find he other roots.

3Unfortunately the investors objetive function is not globally concave so we cannot
rely on second order conditions. We can however check that her utility is increasing in
α for α ∈ [0,

√
5−1
2

) and decreasing fro α ∈ (
√
5−1
2

, 1].
4Tool: Actually substituting requires you to be able to solve for t. We could do that

in this example but sometimes we cannot. If we cannot substitute for t directly then
instead we can replace t with t(α) in order to make it explicit that t depends upon α.
When we differentiate with respect to α in order to find the investor’s optimal α we then
also differentiate t(α).
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explore how the outcome looks if the players choose their optimal policies
sequentially.

12.2 Identifying Subgame Perfect Nash Equilibria

12.2.1 Generalized Backwards Induction

Subgame Perfect Nash Equilibria for games of complete or incomplete infor-
mation can be identified using a generalized version of backwards induction.
Do do it as follows:

1. Identify the Nash equilibria of all of the final subgames (these final
subgames may contain many nodes).

2. Then identify the Nash equilibria in the next to last set of subgames
conditional upon one of the Nash equilibria that you identified in Step
1 being played in each of the final set of subgames.

3. Continue in this manner right up the game tree until there are no
subgames left.

4. At this point we will have identified a complete set of strategies for
all players and this set of strategies forms a subgame perfect Nash
equilibrium.

This procedure lets us identify a subgame perfect Nash equilibrium, note
though that this does not imply that there exists a unique subgame perfect
Nash equilibrium. For example if there are multiple Nash equilibria in any of
the final subgames then there are multiple sub game perfect Nash equilibria
in the game itself. We also have however that if an extensive form game, Γ,
consists of a finite series of games in strategic form in which the outcome of
each strategic form game is observed after it is played and players’ utilities
are given by the sum of the utilities derived from the strategic form games,
then, if each strategic form game has a unique Nash equilibrium, the game
Γ has a unique subgame perfect Nash equilibrium.
In practice when implementing this procedure for games with continuous

strategy spaces you will need to follow the same principles as those given in
the discussion of backwards induction. You assume maximizing actors that,
when optimizing, take account of future plays and the impact of actions
taken now on future strategies.
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12.2.2 The One Stage Deviation Principle

The generalized backwards induction procedure given above is guaranteed
to work. The problem with it is that it can be cumbersome to implement,
especially when games are large. In such cases subgame perfect Nash equi-
libria can sometimes be readily identified use a principle variously called
the One-Stage-Deviation Principle, the No-Single Improvement Principle,
The One Deviation Property... this principle tells us that when we check
for subgame perfection, we need not check for all possible deviations from
an equilibrium, rather, if we can satisfy ourselves that no deviation in just
one stage is profitable, then no deviation is profitable. the idea works by
showing that if any deviation is possible, then a single deviation is possi-
ble. The intuition behind the proof is rather simple: if playing any rival
strategy is profitable then consider the string of points at which deviations
add to the profitability of the rival strategy, take the last of this string and
consider the subgame starting there: that is a subgame in which deviating
only in the first stage is profitable. Here is a more formal statement and
proof of the principle:

Proposition 136 (The One Stage Deviation Principle) A profile of
strategies forms a subgame perfect equilibrium if and only if there is no
stage of the game from which any player can gain by changing her strategy
there, keeping it fixed at all other stages. That is: the strategy profile σ is
a subgame perfect equilibrium of a finite horizon extensive form game if
and only if whenever any player i moves at history h, ui(σi(h),σ−i(h)) >
ui(σ

0
i(h),σ−i(h)) where σ0i(h) differs from σi(h) only in the action pre-

scribed after history h.

Proof. The “if” part follows from the definition of sub-game perfection.
For the “only if” part we need to show that in every case in which a
player has an incentive to deviate from strategy σi there is a subgame such
the player profits by deviating only at the initial node of that subgame. So,
assume that after history h, i has an incentive to deviate from σi by playing
some other strategy (that may be altogether different from σi after history
h ). In particular, consider the rival strategy σ0i that, among all those that
are profitable deviations from σi, is the one (or one of the ones) that is
different from σi after as few histories as possible.5 In particular, σ0i differs
from σi after a finite number of histories (since we are considering finite
games). Let h∗ be the longest history for which σ0i differs from σi (that
is choose h∗ such that σ0i and σi specify the same actions for all histories
after h∗). Now we then have that in the subgame beginning at h∗, there is
a profitable strategy that differs from σi only at h∗ (note that we have if

5For example if there are two deviant strategies σ00i and σ000i that are both profitable
deviations from σi; with σ00i specifying different actions to σi after two histories and σ000i
specifying different actions after three histories, then let σ0i = σ00i .
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it were not profitable to deviate at h∗ then σ0i would not be the deviation
from σi that has the smallest number of deviations). Hence, whenever a
player has an incentive to deviate from strategy σi there is some subgame
(namely the one beginning at h∗) in which she has an incentive to deviate
only at h∗, conversely, if in every subgame the player does not have an
incentive to deviate only at the beginning of that subgame then he never
has an incentive to deviate at all.

Intuitively, this principle is useful because it tells us that we do not have
to search for complex deviations that involve taking a hit in one period in
order to regain the loss in a later period. Once we can establish that at
no point is a simple deviation profitable, the principle then tells us that
no deviations are profitable.6 The principle extends to many infinite hori-
zon games (see Fudenberg and Tirole 1995, 108-10) and to other solution
concepts for games of incomplete information (see below).

Example 137 The proof of Proposition 3.1 in Muthoo implicitly used a
version of the one stage deviation principle for infinite horizon games. The
principle can be used to provide easier proofs more general theories. Con-
sider for example the following proposition that makes use of the finding of
Exercise 44.

Proposition 138 There exists a pair (x̄, ȳ) ∈ Rn ×Rn such that:
x̄ maximizes %1 subject to (x, 0) %2 (ȳ, 1) and
ȳ maximizes %2 subject to (y, 0) %1 (x̄, 1)
Furthermore the following constitutes a sub-game perfect equilibrium set

of strategies: Player 1 always proposes x̄ and accepts ȳ and any proposal
y if and only if (y, 0) Â1 (x̄, 1); Player 2 always proposes ȳ, accepts x̄ and
any proposal x if and only if (x, 0) Â2 (ȳ, 1).

Proof. Existence was established by you in Exercise 44. Now, using the
one stage deviation principle, we check that a deviation from the prescribed
strategies in any single stage does not improve the payoff of any player.
There are two types of deviations to consider: (i) deviations in which in a
single stage an offerer offers some outcome other than the prescribed offer;
and (ii) deviations in which the receiver uses a different acceptance rule in
a given stage.
(i) For Player 1, offering any x̃ that does not maximizes %1 subject to

(x, 0) %2 (ȳ, 1) must either be an offer for which x̃ ≺1 x̄ or else it must be

6For a useful analogous principle that you can use for other solution con-
cepts such as sequential equilibrium or perfect Bayesian equilibrium see Ebbe Hen-
don, Hans Jorgen Jacobsen, and Birgitte Sloth. “The One-Shot-Deviation Princi-
ple for Sequential Rationality.” Games and Economic Behavior 12, 274—282 (1996)
http://sv5.vwl.tuwien.ac.at/literatur/GEB/Vol12-2/0018a.pdf
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that x̃ is not acceptable to Player 2. The former is clearly sub-optimal. In
the latter case, Player 1 receives (ȳ, 1) instead of (x̄, 0). We now show that
this is sub-optimal. Note that if (ȳ, 0) Â1 (x̄, 0) then (since (ȳ, 0) %2 (ȳ, 1)),
x̄ does not maximizes %1 subject to (x, 0) %2 (ȳ, 1), a contradiction. It
follows then that (ȳ, 1) ≺1 (ȳ, 0) -1 (x̄, 0) and hence that choosing (ȳ, 1)
over (x̄, 0) is suboptimal.
(ii) Deviation in any stage where Player 1 has to choose whether to

accept or reject an offer made by Player 2 occurs if Player 1 accepts an
offer y with (y, 0) -1 (x̄, 1), or rejects an offer y for which (y, 0) Â1 (x̄, 1).
In the former case, Player 1 does not improve upon his return from playing
rejecting, since rejecting yields (x̄, 1) and (y, 0) -1 (x̄, 1). In the latter case
accepting y rather than waiting one period and receiving x̄ yields a lower
return for sure since (y, 0) Â1 (x̄, 1).
An analogous argument demonstrates that one stage deviation is also

sub-optimal for Player 2. This establishes that no single stage deviation is
profitable for either player and hence the strategies form a subgame perfect
Nash equilibrium.

Remark 139 Note that all we have done is established that a one-stage
deviation is not profitable; we have not checked for more complex devia-
tions. Fortunately, the one stage deviation principle tells us that we do not
have to. Note also that the result here is more general than that in Muthoo
insofar as it allows for a much more general class of preferences (Muthoo’s
is essentially for linear preferences and zero-sum games).

12.3 The Principle of Optimality

An entire field of mathematics, “Dynamic Programming” exists to solve
problems that involve maximizing streams of utility over time. Dynamic
programming is difficult, even if the problems involve only one player. For
multiple players it is more complex. However, a core but conceptually sim-
ple principle from dynamic programming can be used for infinitely repeated
games: the principle of optimality. The idea is that actions taken in a given
period affect your welfare in that period but they also affect the “state”
that you will be in for the next period, and hence the choices available to
you (or to others) in future periods, and hence your future welfare.
In this context we define a set of possible states, St, with typical element

st. For example, St may be given by St = {s1 =“I am President in time
t”, s2 = “I am not President in time t”}. These states are themselves a
function of the profile of actions taken by all players, at, with some value
determined by a transition function of the form st+1 = g(at|st) (continuing
our example, g is the function that gets you elected and has as argument
action profile a and whether or not you were President last period).
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In the one player case then, where a player has an action set Ai, assuming
some exogenous s0, her intertemporal maximization problem is of the form:

max
(at)t=0...∞

∞X
t=0

δtu(at, st) = max
(at)t=0...∞

∞X
t=0

δtu(at, g(at−1|st−1))

= max
(at)t=0...∞

∞X
t=0

δtu(at, g(at−1|g(at−2|st−1)))

= etc.

You can see how this problem gets complicated. The way to deal with this
problem is to assume that a solution exists7 and then see what properties
of the solution are implied by this, in order to pin down what the solution
is. We define a value function associated with each possible state v(s).
Where v(s0) is the solution to max

(at)t=1...∞
P∞
t=0 u(at, st) and describe the

maximum possible utility that a player can get given that the present state
is s0. The principle of optimality, or the Bellman equation, then states that
if a solution to this problem exists, we then have:

v(s0) = max{u(a0, s0) + δv(g(a0|s0))}

This equation provides simple conditions on what v looks like and leads
to the identification of optimal actions (at)t=0...∞. The procedure is to find
a solution to the right hand side (which will contain the first derivative of
v as an argument) and then to use the Bellman equation to pin down v.
The method is even easier to apply if there is a small set of possible

states and we are interested in knowing under what conditions equilibrium
actions leads to a stationary outcome–that is when will individuals take
actions to preserve the status quo? This is essentially the approach used in
the Ferejohn piece on the readings for this week.

Example 140 Ignoring the complications associated with the stochastic
nature of the policy process, the core of the Ferejohn model uses the principle
of optimality as follows. A individual i can receive payoff V I , if she is
in office and acts optimally in this and all future periods. She receives
payoff V O if she is out of office, and acts optimally in this and all future
periods. Note that these payoffs are assumed to be time independent. An
agent in office (known as “the government”) has Action set Ai = {w =work
hard, s =slack off}. If she works hard she gets returned to office, if she slacks
she gets booted out of office.

7For this you will need to impose conditions that guarantee that a solution will exist.
Such conditions may include assuming that A is a nonempty, time-invariant, compact
subset of Rn, that u is continous and has an upper limit ū, and that δ ∈ (0, 1).
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Hence, using the Bellman equation the agent who is in office can expect
an optimal payoff of:

V I = max{u(w) + δV I , u(s) + δV O} (∗)

Look hard at this and convince yourself that it is true. Now, assume that
V O is exogenous and that the government can unilaterally find a solution to
maximizing u(s), now let’s ask the question: what does the electorate need
to do to fix the utility associated with w to be such that the government will
want to work hard and stay in office? The answer is that the government
should want to choose w over s. This answer, together with the Bellman
equation (∗) provides us immediately with two conditions (make sure you
can see where these two conditions are coming from!):
(i) V I = u(w) + δV I

(ii) u(w) + δV I ≥ u(s) + δV O

The first condition gives: V I = u(w)
1−δ

Substituting this into (ii) gives: u(w) + δ u(w)1−δ ≥ u(s) + δV O and hence:

u(w) ≥ (1− δ)[u(s) + δV O]

This then is the minimum amount of utility that the government has to
get from performing well in order to want to stay in office every period. It
is the core condition that drives the Ferejohn model.

Problem 141 Design any simple 2 player game (for example with 2 par-
ties, 2 politicians, a lobbyist and a politician, two countries...), infinitely
repeated, in which each person has a continuous action set but there are a
finite number of states. Defend the assumption that the values achievable in
each state are time independent (if they are!) and use the Bellman equation
to solve the game. Keep it simple.

12.4 Repeated Games

12.4.1 Identifying Nash Equilibria in Repeated Games

Repeated games are a special case of extensive form games. Here I focus
on infinitely repeated games, although I include one exercise in which you
are asked to find an equilibrium also for a finite game.
Let Γ denote a game and let Γ∗ denote the game which has Γ repeated

an infinite number of times. The game Γ∗ is called the “supergame of Γ.”
Payoffs from the supergame are typically given by some average of the

payoffs of the stage game. One possibility is the Cesaro limit: the limit
of
Ph
t=1

ui(t)
h as h → ∞. A second, more common, possibility is to use:

V ((ut)t=0,1,...∞) = (1− δ)
P∞
t=0 δ

tui(t).
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Problem 142 Why is (1− δ) placed before the
P∞

t=0 δ
tui(t)?

Definition 143 Let a payoff vector x be called “feasible” in Γ if it is a
convex combination of payoff vectors to pure strategy profiles in Γ. The set
of feasible payoffs is then a convex set: it is the set of payoffs that could be
achieved if all players mixed jointly (in contrast to the non-convex set that
we illustrated in Figure 14.1 that resulted from independent mixing).

Definition 144 Let a payoff vector x be called “individually rational”
in Γ if for each player i, xi ≥ minσ−i maxσi ui(σi,σ−i). For player i, xi is
termed i’s minmax; other players can not force him below this level.8

Definition 145 Let a payoff vector x be called “Nash dominating” in
Γ if for each player i, xi > min{ui(σ)|σ is a Nash equilibrium}.9

12.4.2 Nash Equilibrium (Folk theorem)

Using these definitions we now state without proof the following theorem:

Theorem 146 (A Folk Theorem for Nash Equilibria) The payoff vec-
tors to Nash equilibria points in the supergame Γ∗ is the set of feasible,
individually rational payoffs in the game Γ.

Hence to establish that a payoff vector u can be supported as a Nash
equilibrium in your game you simply need to show that the payoff vector
is feasible and individually rational. More constructively, you can demon-
strate that such a Nash equilibrium is indeed a Nash equilibrium by demon-
strating that for both players and some discount rates, player i’s maximum
payoff from deviating in one period plus the value to her of receiving her
minimax in all future periods exceeds (weakly) her (average) valuation of
u for this and all future periods.
More formally, letting u∗i denote the highest payoff that an individual

can achieve in a stage game, given the strategies employed by the other
players, letting ummi denote the player’s minimax payoff, you simply need
to establish that for each player i, for some δi and for some ui we have:

u∗i +
δi

1− δi
ummi ≥ 1

1− δi
ui

8 In this definition the function “minσ−i(x)” should be interpreted as “choose the
minimum value that x can take when all players other than i choose a profile of actions
σ−i”.

9The term “Nash dominating is not a standard term in the literature, but will be
useful for what follows. Note a Nash dominating payoff vector does not necessarily Pareto
dominate any Nash equilibrium payoff vector, since it only requires that each person does
better than they would do under some Nash equilibrium.
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equivalently

ui ≤ δiu
mm
i + (1− δi)u

∗
i

which in English is: that ui is less than some convex combination of ummi
and some u∗i .

Exercise 147 Design a 2 person 3 pure strategy normal form game. Graph
the set of feasible and individually rational payoffs to the repeat play version
of your game. Choose one element in the interior of this set and suggest
how this could be supported as a Nash equilibrium of the repeated game.
Find a game in which no point in the interior of the set can be supported
as a Nash equilibrium of the repeated game.

Although in political science, we often focus on Nash equilibria in the
repeated game that are Pareto superior to payoffs from repeating Nash
equilibria from the stage games, Theorem 146 says nothing about Pareto
optimality. In fact the theorem tells us that it is possible to sustain equilib-
ria that are Pareto inferior to Nash equilibria from the stage game. These
seem perverse but, because a player’s individually rational payoff is never
greater than, and possibly lower than, the minimum payoff that she can
achieve in a Nash equilibrium (prove this!), these perverse outcomes are
specifically admitted by the Theorem. This is illustrated in the following
exercise.

Problem 148 Consider the following example (Figure 12.1). The Figure
illustrates a game in which each player has a dominant strategy to play A
or a.

  II
   A B C 
I a 10

10 
5

4 
0

2 
  b 4

5 
3

3 
0

1 
  c 2

0 
1

0 
0

0 
 

FIGURE 12.1. Folk Theorem and Pareto Dominated equilibria

Identify the unique Nash equilibrium. Show that outcome (b,B), can be
sustained as a Nash equilibrium of the supergame for sufficiently patient
players.
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The previous problem relies on the fact that the minimax payoffs are
lower than any Nash dominating payoffs (indeed, lower than the lowest
Nash equilibrium payoffs for each player). The gap between these two can
be used to sustain inefficient equilibria through threats of pushing players
into receiving payoffs that hurt them even more than the Nash equilibrium
payoffs hurt. There is reason to wonder whether such threats of punish-
ments are in fact credible, and this leads us to a discussion of subgame
perfection in repeat play games.
Before we consider subgame perfection however, we note one advantage

of the existence of a “gap” between minimax payoffs and payoffs from
repeated stage game Nash equilibria: the gap allows us to support Pareto
improvements over Nash equilibria even in finite games (see Benoit and
Krishna, 1987). Consider the following example.

Exercise 149 Assume that players I and II are to play the following game
for T periods. The game is a kind of Prisoner’s Dilemma but with an option
to provide some for of self-incriminating evidence that hurts all players.
Assume that each has a discount factor of δ = 1 (hence we are assuming
full patience, but since this is a finite game utility is finite). Show that
a Nash equilibrium exists in which for some T , average payoffs (given byPT

t=1
ui(t)
T are arbitrarily close to the cooperative payoff from the stage

game, 3.

  II
   A B C 
I a 3

3 
4

1 
0 

1 
  b 1

4 
2

2 
0 

0 
  c 1

0 
0

0 
0 

0 
 

FIGURE 12.2. Augemented Prisoners’ Dilemma

12.4.3 Subgame Perfect Nash Equilibrium (Folk theorem)

Working through Problem 148 and Exercise 149 you will likely be concerned
that the proposed solutions involve strategies that are not Nash equilibria
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off the equilibrium path; in other words, there is a concern of subgame per-
fection. In fact, since it is a stronger solution concept,subgame perfection is
harder to achieve in these repeated games than is simple Nash equilibrium.
For sufficiently patient players, we have the following result:

Theorem 150 (A Folk Theorem for subgame perfect Nash equilibria)
The payoff vectors to subgame perfect Nash equilibria in the supergame Γ∗

is the set of feasible, Nash dominating payoffs in the game Γ.

Importantly, the set of subgame perfect equilibria that is established in
Theorem 150 (due to Friedman 1971) is a subset, and possibly a strict sub-
set, of those identified in Theorem 146. Using the method described above
to identify and characterize sub-game perfect Nash of the repeated game
will not necessarily work for these games, although a similar method can
be employed in which punishment involves employing a Nash equilibrium,
and possibly a particular Nash equilibrium that especially punishes deviant
players.
Other, stronger results than Theorem 150 exist that increase the set

of identifiable subgame perfect Nash equilibria; these however typically
involve very complex strategies on the parts of all players and they also,
typically, require the existence of outcomes that discriminate finely across
players, allowing for punishment or reward of given players without that
implying a punishment (or reward) of other players.10

10For more on this, see Section 8.8 of Osborne and Rubinstein. The problem is one
that has produced considerable work over the past decade.
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13
Solving Extensive Form Games of
Incomplete Information

The study of games with different types of incomplete information has
been a growing and exciting area of research. In many contexts, political
actors may have incentives to hide things: to hide what they do or to hide
what they want. When they don’t want to hide them, they may still be
incapable of communicating their true desires because of fears others have
that they may be lying. Similarly, when engaging with others, they may
have uncertainty about the strategies available to their opponents, about
the constraints the opponent face, over what the opponents value, over
what they do, or are likely to do, and even over the rationality of their
opponents: over how they reason and how they make use of information.
The results and approaches we discuss this week are designed within the
context of rational actors, worth thinking about though is how you might
try to use some of these ideas to model situations in which you do not think
that players chose strategies optimally or learn efficiently.

13.1 Identifying Equilibrium in Bayesian Extensive
Games

The considerations raised in our discussion of uncertainty over player types
at the end of section 8.1.1, are especially germane for the class of “Bayesian
Extensive Games with Observable Actions.” In these games, uncertainty is
centered on the information individuals have over each others’ preferences.
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In particular, as discussed above, in these, the “type” of each player, i, is
assumed to be drawn from some distribution Θi.The particular value θi is
chosen and is private information to player i. All other information is public.
This set-up is obviously appropriate for modelling situations where you do
not know a person’s preferences; but it can also be used to model many
different types of uncertainty, such as uncertainty about the environment in
which an agent is operating. For such situations we simply treat individuals
in different environments as if they were different types of individuals.

In such games players choose optimally conditional upon their beliefs
about the “types” of all other players. They need to take account of what
each possible type might in fact do or want at any relevant information set.
A notion of equilibrium then requires both a specification of strategies,

σ, and a specification of beliefs, µ. The beliefs can be treated either as a
belief about the types of the players, or, in practice, as a belief about what
decision node has been reached within any given information set.1

In the context of such games we have the following equilibrium concept:

Definition 151 A pair (σ, µ) where σ is a profile of strategies for each
type of player (not simply for each player) and µ is a collection of proba-
bility measures, with typical element µi(ι) specifying a probability measure
over the nodes in information set ι, is a “Weak Perfect Bayesian Equi-
librium” if:
[Sequential Rationality] For each player of type θi, moving at information

set ι, player i’s expected payoff from playing σi(θi), E[ui(ι)|ι, µ,σi(ι),σ−i(ι)]
is at least as good for type θi as the expected payoff from playing any rival
strategy σ0i available to player i,E[ui(ι)|ι, µ,σ0i(ι),σ−i(ι)].
[Bayesian updating on the Equilibrium Path] On the equilibrium path,

beliefs, µ, are determined by Bayes’ rule and by the players’ equilibrium
strategies wherever possible. That is, whenever Pr(ι|σ) > 0, we have:

Pr(x|ι,σ) = Pr(x|σ)
Pr(ι|σ)

It is very important to emphasize that the strategy specifies an action
for each type, even though in any real situation only one type really exists.
The reason is that if others do not know what the true type is they have to
act and form beliefs under the assumption that they may be playing with
any one of some set of possible opponents.

This notion of equilibrium can be applied to both normal and extensive
form games. In normal form games, we do not have a process of learning
over time and so do not need to use updating. But games are still interesting

1See figure 13.C.1 in MWG, p451 for a graphic illustrattion of this equivalence.
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in their own right but also useful to work with to develop skills that you will
use in more complex games. before moving onto the cases with learning,
we consider here an example of an application with no learning.

Example 152 (incomplete information but no learning) Consider the
following variation of the problem we looked at in Exercise 109. As before,
let N = {1, 2, ...n} and let Ai = {L,R}. This time let utilities be given by:

ui(a) =

⎧⎨⎩ 0 if all players play L
2− θi if at least one player, including i, plays R
2 if at least one player plays R but i plays L

Hence this is the same as in Exercise 109 if θi = 1 for all players. In this
case however we assume θi is drawn from a uniform distribution on [0, 3],
and, although the distribution is common and is common knowledge, each
θi is private information for each i.

Exercise 153 In this game the following is a Weak Perfect Bayesian equi-
librium of the two player game. Each player of type θi < θ∗ plays R, and
each player of type θi ≥ θ∗ plays L, where θ∗ = 6

5 . Players’ beliefs about
the types of the other players are given simply by their priors.
It’s relatively straightforward to check that this is an equilibrium. We do

that as follows. We fix the strategy of Player 1 and check that the strategies
of Player 2 are indeed equilibrium strategies given her type. If Player 1
plays according to this equilibrium, then player 2’s belief that player 1 will
play R is given by θ∗

3 (recall that θi is drawn from a uniform distribution
on [0, 3]), or for θ∗ = 6

5 , by
2
5 . If Player 2 of type θ0i plays R she gains

2− θ0i, if she plays L she gains
3
5 × 0+

2
5 × 2 =

4
5 . Playing R is better than

playing L then if 2− θ0i >
4
5 , or θ

0
i <

6
5 = θ∗; Playing L is at least as good

as playing R if 2− θ0i ≤ 4
5 , or θ

0
i ≥ 6

5 = θ∗. Hence the equilibrium strategies
we have described do indeed characterize optimal play. Note that as in our
discussion of Harsanyi’s justification of mixed strategies, we now have a
pure strategy equilibrium in a game that is a perturbation of the game in
Exercise 109 in which we studied mixed strategies.
Now let’s get behind the strategy of proof here. The form of equilibrium

is very common in these games: all types less than θ∗ do one thing and all
those greater do another thing. This is a property called monotonicity and
can be established ex ante by considering properties of the game.2 In the
proof above we verify monotonocity ex post. The trick though is to pin down

2Especially useful for establishing monotonoicity is the following:

Theorem 154 (Topkis Theorem (1978)) Consider the problem maxa∈Af(a, θ). If
all of the crosspartials of f are strictly positive, then the optimal solution has monotone
comparative statics.

For more on this see Ashworth and Bueno de Mesquita, 2004. “Monotone Comparative
Statics in Models of Politics.”
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θ∗. This is done as follows. We know that for any player with type θi < θ∗

we have that a given type will be indifferent if and only if 2−θ0i = θ∗
3 ×2, or

θ0i = 2− 2θ∗
3 . Assuming monotonicity, we now focus on the indifferent type:

this will be the cutoff type in the set of equilibrium strategies: all players
below this indifferent type will play one strategy and all those above play
the other strategy. But this simply means that the indifferent type is one
for whom θ0i = θ∗. To identify this type we then use θ0i = 2 − 2θ∗

3 , and let
θ0i = θ∗ and then solve for θ∗. Doing this we find θ∗ = 6

5 .

Exercise 155 Solve for the weak Perfect Bayesian equilibrium for the N-
person game.

We now consider a case of an extensive form game. In such games we
have to consider behavior both on and off the equilibrium path. However,
note that the beliefs that form part of the equilibrium are not constrained
off the equilibrium path: hence players are free to hold any beliefs about
what node they are at when at information sets that they never reach.
In practice this means that you can specify equilibria that are sustained
by off-the-equilibrium path beliefs that you have constructed in order to
sustain the equilibrium. This is often not very compelling. We use the
following example then both to illustrate both how to search for Weak
Perfect Bayesian equilibria and to demonstrate why the solution concept
may not be entirely satisfactory.

Example 156 There is a diplomatic incident in which the President of
country A may or may not have insulted the President of country B. The
problem is that no one is altogether sure. Country A must decide whether
to follow up on the possible insult with a genuine attack, or wait it out. If A
attacks it beats B handily enough. If it waits it out, it may be that B tries
to attack A. Now, if B attacks A, B can beat A handily enough. If it doesn’t
then there is no fighting, but political scientists eventually discover whether
or not offense was meant by the remark. If offense was meant then A gets to
gloat about the one in got away with; if not then A, but especially B gets to
gloat about how level headed they are. Assume that there is a 50:50 chance
that the remark was an insult. Then the game is as represented below:

There are a number of possible Nash equilibria to this game. Here how-
ever we focus on a particular Weak Perfect Bayesian Equilibrium: one in
which A always attacks, and B always attacks if A does not attack. These
behavioral strategies are marked with bold lines on the game tree. Recall
that weak perfect Bayesian equilibria also need to specify a set of beliefs for
the likelihood of each node given that it’s information set is reached. These
are indicated by numbers at each of the nodes in each of the information
sets.
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No Attack
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.999 
.001 

.5 .5

FIGURE 13.1. What did he mean by that exactly? A security dilemma.

In the last example, I proposed a Weak Perfect Bayesian equilibrium.
You need to check to see if it really is one. This requires (1) Checking
all the beliefs: given the strategies employed by all, do these beliefs satisfy
Bayes’ rule wherever possible? (2) Checking sequential rationality: given the
beliefs players have about what nodes they are at within any information
set, work out what the expected payoff of each actor is from choosing each
action: are their choices optimal?
In fact verifying that a pair is a Weak Perfect Bayesian Equilibrium is

not so hard; more difficult is identifying the set of Weak Perfect Bayesian
Equilibria. For that I suggest the following approach: Go to the ends of
the game tree and consider each strategy choice for each player. Assuming
that they are choosing at a non-singleton information set, consider the set
of beliefs that they would need to opt to use each of the pure strategy
options available to them. For some you will find that there are reasonable
beliefs, for others you will find that there are not. If there is more than one
outcome that could be optimal given some beliefs, work out what set of
beliefs would make the individual indifferent between all of these outcomes:
these are the beliefs that are required for the individual to be willing to
mix. The beliefs that you identify should be written as a function of the
individual’s priors and of past actions by other players, much as we did
when looking at backwards induction. (For example we might have: Player
i will choose x at information set ι if µ(x|ι,σ) > .5. And from our discussion
of Bayes’ rule we may have µ(x|ι,σ) = µ(x|σ)

Pr(ι|σ) , where µ(x|σ) is a function
of the strategies of other players.) Equipped with this you can now move
up the game tree and see which strategies by other players will both be
optimal given that the final player plays x and also induce the beliefs that
µ(x|ι,σ) > .5. This method can be continued up the game tree to collect a
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set of equations that simultaneously need to be satisfied for all strategies
to be optimal and all beliefs consistent with Bayes” rule.
Returning now to our uncertain insults game: Once you satisfy your-

self that this set of strategies and beliefs form a Weak Perfect Bayesian
equilibrium look to see whether you think it is reasonable. In fact it re-
lies on player B being very confident about a particular interpretation of
past events, without having any information to support his beliefs. He can
do this because in equilibrium he should never have to make use of these
beliefs, nonetheless they determine what lies on the equilibrium path. How-
ever, if in fact A placed even the tiniest weight on not going to war, then
B could employ Bayes’ rule and work out that, since A took his action in
ignorance of the state of the world (specifically, with a 50:50 prior), then
this is the correct set of beliefs for B also.3

We will now work through two slightly more complex games; one in the
study of bargaining and one from a study of the politics of judicial decision
making. In the first case a player has a continuous action space but the
problem is made a little easier by discrete types. In the second the parame-
ter over which there is uncertainty is distributed according to a continuous
distribution function f over some range and so Bayesian updating will
require using integration. The example is however rendered tractable by
relatively simple (and non continuous) utility functions.

13.2 Applications

13.2.1 An Application with Continuous Actions and Discrete
Types: A Two Period Bargaining Model

The first example is based on the first proposition in Fudenberg and Tirole
(1983) (“Sequential bargaining with Incomplete Information”).
Consider a case where a government and secessionist rebels are at war.

The government is considering offering autonomy level a ∈ [0, 1]. The gov-
ernment and rebels have discount rates δg and δr which are common knowl-
edge. If the government’s offer is accepted, the government gains payoff 1−a
and the rebels have payoff a with probability 1

2 (the rebels are moderate)
and a− θ with probability 1

2 (the rebels are hard core), where θ ∈ (0,
1
2 ).

What should the government offer in a take it or leave it environment?
Obviously if the government offered a = θ the offer would be accepted by
either type (for convenience we assume acceptance in the case of indiffer-
ence). If she offered something less than θ it would only be accepted by
the moderates, in which case she would do better by offering a = 0. The

3Such a condition is called “structural consistency.” It requires that there exists
some subjective probabilities over strategy profiles that could justify the beliefs. For
more, see Osborne and Rubinstein 228.1 and the following discussion.
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question then is whether to offer θ or 0. Which to do depends on the gov-
ernment’s beliefs about the rebels being hard core or not. Let q denote the
government’s belief that the rebels are moderate. The government is better
off offering a = θ if getting payoff 1− θ for sure is better than getting 1− 0
with probability q and getting 0 with probability 1−q. That is, if 1−θ > q.
We then have:

Lemma 157 For the one period game with beliefs q, the unique optimal
strategy for the government is to offer θ if q < 1− θ and 0 otherwise.

How about the two period case? The second period of the two period case
is like the one period game except that the beliefs may differ. A number
of the features are the same: the government should only offer 0 or θ; the
rebels should always accept θ; 0 should be accepted only by the moderates.
Moving back to the first period, we consider first the responses of the

rebels to any first round offer a1. Since in the second period nothing more
than θ will be offered, accepting autonomy level θ, or more, always makes
sense for all rebel types. For the hard core types, acceptance in the first
round makes sense if and only if a1 ≥ θ. The problem then is with the mod-
erates who may have an incentive in rejecting some otherwise acceptable
offer in the hopes of a better return in the next round.
Let ã1 denote the lowest amount of autonomy that the moderates will

accept in the first round if they believe that θ will be offered in the second
round should they refuse. By definition then we have: ã1 = δrθ.
We now use these elements to establish the following claim:

Claim 158 There exists an (essentially) unique perfect Bayesian equilib-
rium. In the first period the government plays either θ or ã1 in the first
period (depending on whether θ S 1−δg

2−δg−δr ). The hard-core rebels accept a1
if and only a1 ≥ θ; the moderates accept offer a1 if and only if a1 ≥ ã1.
If a second period is reached, the government believes that the rebels are
hard-core with probability greater than 1

2 and offers autonomy level a2 = θ
in the second period and this is accepted by all rebels.

Proof. (i) We begin by working out the government’s beliefs about the
rebels in all cases in which a second round is reached.
Assume first that a first round offer less than θ is made. In every equi-

librium the hard core always rejects such offers.
Let σm(p1) denote the probability with which the moderate rebel rejects

any offer a1 < θ. In the event that some some offer a1 < θ is rejected. Note
that such an offer is always rejected by the hard core. The government’s
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posterior probability that the rebel is moderate is then:

Pr(M |rejection) =
Pr(rejection|M)× Pr(M)

Pr(rej0n|H)× Pr(H) + Pr(rej0n|M)× Pr(M)

=
σm(a1)× 1

2

σm(p1)× 1
2 +

1
2

≤ 1

2
< 1− θ

Hence the posterior that the rebel is a moderate (for any σh function) is
below 1− θ.
Although in no equilibrium should an offer greater than θ be made, for

completeness we examine the case in which such an offer is made and is
rejected (this part of the game tree is only reached if errors are made by
both players!). In this case we simply assume that the posterior that the
rebel is a moderate (for any σh function) is still below 1− θ.4

(ii) Next we consider period 2 actions given these beliefs. From Lemma
157, the government’s unique best response is to offer autonomy level θ in
the second period. This offer is always accepted by all rebel types.
(iii) Finally, we consider actions in the first period.
We have already seen that the hard core rebels always reject offers below

θ. Since θ is always acceptible to rebels in a second round, nothing greater
than θ is ever offered in equilibrium in the second round and hence in any
equilibrium a first period offer of ai ≥ θ is always accepted by rebels in the
first round and hence no offer strictly greater than θ should be made.
Hence in period 1 the government must choose between offering a1 = θ

which will be accepted for sure, or offering some a1 < θ, which may be
rejected, in which case she will offer θ in period 2.
If she offers a1 < ã1 this will be rejected by both types (by the definition

of ã1). If she offers any a1 ∈ (ã1, θ), this will be accepted only if the buyer
is moderate, in which case so too would ã1 be accepted, which is a better
deal for the government.
The only question then is whether to offer ã1 or θ. The government does

better by offering ã1 iff 1
2δg(1 − θ) + 1

2(1 − ã1) > 1 − θ, or, substituting
for ã1: iff 1

2δg(1 − θ) + 1
2(1 − δrθ) > 1 − θ. Solving for θ this condition is

satisfied, iff θ >
1−δg

2−δg−δr .

Note that if θ > 1−δg
2−δg−δr , then the bargaining process may involve a

one period delay as first offers are rejected by hard core types. A necessary

4Note, although not very reasonable, it is possible that in this case we could posit
that the government has other unreasonable beliefs that would alter his strategy in the
second stage but these would only be relevant if the government makes an error in the
first stage.
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condition for this to happen is that the government is more patient than
the rebels in the sense that δg > δr. To see this note that δg ≤ δr implies
1−δg

2−δg−δr ≥
1
2 , and hence delay requires that θ >

1
2 , a possibility that we

ruled out at the outset. The logic is that if the rebels are very patient than
the government, then ã1 is close to θ; but if the government is impatient
then it is needlessly taking a risk of losing delay to make a small marginal
gain, relative to offering θ at the outset. In contrast if the rebels are not
patient, then there is a bigger spread between ã1 and θ, and so the riskier
strategy of offering only ã1 may work out to the government’s advantage.

Remark 159 With a little change in notation you can see that this prob-
lem also represents a standard bargaining problem in which a seller offers a
price in two periods to a prospective buyer with unknown valuations. Sim-
ply replace a with 1 − p. Hence whereas the government’s utility is 1 − a,
the seller’s utility is p. The moderate rebels gain a, which corresponds to
buyers with utility 1−p, which can be interpreted as utility when the buyers
valuation is high but the buyer pays price p. The hard core types gain a−θ,
which corresponds to buyers with utility (1−θ)−p, which can be interpreted
as low valuation types, who value the good at only (1− θ).

13.2.2 An Application with Discrete Actions and Continuous
Types: A Model of Strategic Auditing

Consider the following game, based on Cameron, Segal and Songer (2000).
There are two players, N = {L,H}, where L denotes the lower court and H
the higher court. The game involves the decision whether to accept the facts
of a case as being admissible or not, where admissibility depends on how
intrusive the search was that produced the facts. If L accepts or rejects
the case, H can then decide whether to audit L’s decision or not. More
formally, the strategy sets are AL = {accept, reject} and AH = {audit, not
audit}.5 Each player wants a final outcome that is consistent with their
view of acceptability, but auditing comes at a cost–both to the auditor
and the audited, The true facts of a case are given by some value x ∈ R1.
Each player i ∈ {L,H} has a notion of maximally intrusive facts, given
by xi ∈ R1 and deems a case admissible if x < xi. We assume that xH >
xL, and hence anything that L finds admissible, H also finds admissible.
Utilities are give simply by:

uH = I(correct ruling from H’s perspective)

−kH × I(H undertook audit)

5 In the language of the original paper, L, the Lower court, can accept or reject the
evidence and the higher court can grant or deny certiorari.
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uL = I(correct ruling from L’s perspective)

−kL × I(L’s ruling was overturned by audit)

Where ki ∈ (0, 1) denotes the cost incurred on the parties by the audit.
There are publicly observable facts about the case, denoted by x̂. There

are also unobservable facts, denoted by t,where t is distributed over a space
T with density f . The true facts about the case, x, are given by x = x̂+ t.
The unobservable facts t, are available to L, but are available to H only
if she undertakes a costly audit.

General properties of the equilibrium strategies

General features of L’s Strategy.

We know the following two aspects of L’s strategy for sure:

• If x > xH then L plays “reject”

• If x < xL then L plays “accept”

In the first case, playing “accept” is dominated for L: if L plays “reject”
she will receive uL = 1 whether or not she is audited; but if she chooses
“accept” she receives either 0 or −kL (depending on whether or not she is
audited).
In the second case playing “reject” is dominated for L: if x were in fact

below xL, playing “accept” would yield uL = 1, no matter whatH does, but
if she chooses “reject” she receives either 0 or −kL (depending on whether
or not she is audited).
More difficult is the situation where x lies between xL and xH . These are

the ranges in which L and H are in disagreement over the best outcome.
For this range, let us simply denote L’s probability of rejecting as s(x), or
s(x̂ + t), where, at the moment, we are unsure whether s(x) is a pure or
mixed strategy in this range

General Features of H’s Beliefs.

For H to decide on her best action, she needs to work out what the chances
are that x lies above xH or below xH , given L’s actions.
In this game, it is easy to check that observing “accept” implies that the

x is below xH , since, as we saw above, if x were above xH , playing “accept”
would always be dominated for L. Similarly, observing “reject” implies
that the x is above xL, since if x were below xL, playing “reject” would
always be dominated for L.
Hence the difficult part for H is working out what are the chances that x

lies between xL and xH , given that she L playing “reject.” Her expectation
(belief) that x lies in this range can then be denoted by:
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µ(xL ≤ x < xH |reject, x̂)

Now, we have from the above that:

µ(xL ≤ x < xH |reject, x̂) = µ(xL ≤ x̂+ t < xH |reject, x̂)
= µ(xL − x̂ ≤ t < xH − x̂|reject, x̂)
= µ(ta ≤ t < tb|reject, x̂)

So really we just want to find the probability that t lies in a critical range
between ta = xL− x̂ and tb = xH − x̂, since if t ∈ [ta, tb] then x ∈ [xL, xH ].
From Bayes’ rule we have:

Pr(ta ≤ t < tb|reject, x̂)

=
Pr(reject|ta ≤ t < tb, x̂)× Pr(ta ≤ t < tb, x̂)

Pr(reject|x̂)

=

⎡⎣ p ro b a b i l i ty

o f r e j e c t io n fo r

t ∈ [ta, tb]

⎤⎦Pr(t ∈ [ta, tb])⎡⎣ p ro b

o f r e j ’n fo r

t < ta

⎤⎦Pr(t < ta) +
⎡⎣ p ro b

o f r e j ’n fo r

t ∈ [ta, tb]

⎤⎦Pr(t ∈ [ta, tb]) +
⎡⎣ p ro b

o f r e j ’n fo r

t ≥ tb

⎤⎦Pr(t ≥ tb)
Now, using s(x̂+ t) to denote the probability with which L rejects given

any x = x̂+ t and using the fact that we know the equilibrium probability
of rejection and acceptance outside of the critical range, we have:

Pr(ta ≤ t < tb|reject, x̂)

=

R tb
ta
s(x̂+t)f(t)dtR tb
ta
f(t)dt

×
R tb
ta
f(t)dt

F (ta)× 0 +
R tb
ta
s(x̂+t)f(t)dtR tb
ta
f(t)dt

×
R tb
ta
f(t)dt+ (1− F (tb))× 1

=

R tb
ta
s(x̂+ t)f(t)dtR tb

ta
s(x̂+ t)f(t)dt+ 1− F (tb)

=

R xH−x̂
xL−x̂ s(x̂+ t)f(t)dtR xH−x̂

xL−x̂ s(x̂+ t)f(t)dt+ 1− F (xH − x̂)



164 13. Solving Extensive Form Games of Incomplete Information

General features of H’s strategy.

From our discussion of L’s strategy we know that whenever H observes
acceptance she knows that x is no greater than xH and so she should
accept the lower courts decision. We have then that H’s best response to
“accept” is not to audit.
We need then to work out her best response to “reject.” Her expected

utility from auditing is simply 1−kH ; her expected utility from not auditing
is a function of her beliefs: she expects to receive 0 with probability µ(xL ≤
x < xH |reject, x̂) and 1 with probability 1− µ(xL ≤ x < xH |reject, x̂)).
Hence she will be willing to audit if and only if:

1− kH ≥ (1− µ(xL ≤ x < xH |reject, x̂))

or

µ(xL ≤ x < xH |reject, x̂) ≥ k (13.1)

She will be willing to play a mixed strategy if and only if:

µ(xL ≤ x < xH |reject, x̂) = k

or:

Pr(ta ≤ t < tb|reject, x̂) = k

In the case where she mixes, let r denote the probability with which she
audits.

Equilibrium

We now have all the elements we need to characterize equilibrium.

Characterizing all the Pure Strategy Equilibria

Consider first the cases with pure strategies. There are two types two con-
sider:
(i) Assume first that L rejects whenever x > xL. In this case upon ob-

serving “reject”, H’s belief that x is in the zone of disagreement is exactly:

µ =

R xH−x̂
xL−x̂ s(x̂+t)f(t)dtR xH−x̂

xL−x̂ s(x̂+t)f(t)dt+1−F (xH−x̂)
= F (xH−x̂)−F (xL−x̂)

1−F (xL−x̂) . We have then that,

H 0s best response depends on the relative size of k and F (xH−x̂)−F (xL−x̂)
1−F (xL−x̂) .

In cases where k > F (xH−x̂)−F (xL−x̂)
1−F (xL−x̂) , we have k > µ and so from Equa-

tion 13.1, H will not be willing to audit. In such cases L is indeed wise
to reject whenever x > xL and we have an equilibrium. However, if k <
F (xH−x̂)−F (xL−x̂)

1−F (xL−x̂) then H’s best response to L’s pure strategy is to audit



13.2 Applications 165

(again from Equation 13.1). In this case L receives payoff 0 − kL and she
clearly could have done better by accepting off the bat. So this is not an
equilibrium. We have then that the strategies

• L rejects if and only if x > xL

• H never audits

• µ = F (xH−x̂)−F (xL−x̂)
1−F (xL−x̂)

is an equilibrium if k > F (xH−x̂)−F (xL−x̂)
1−F (xL−x̂) . (This is Part 1 of Proposition

1)
Furthermore this characterizes essentially all equilibria in which L plays

the pure strategy: reject if and only if x > xL. In particular, there is no
such equilibrium when k < F (xH−x̂)−F (xL−x̂)

1−F (xL−x̂) .

(ii) Assume next that L accepts whenever xL < x < xH . Let’s see if this
can be part of an equilibrium set of strategies. In this case we have: µ =R xH−x̂

xL−x̂ s(x̂+t)f(t)dtR xH−x̂
xL−x̂ s(x̂+t)f(t)dt+1−F (xH−x̂)

= 0
1−F (xH−x̂) and so, upon seeing rejection H

believes that x > xH and so does not audit. But if H does not audit in
this supposed equilibrium, then L clearly does better by rejecting whenever
xL < x < xH and tricking H. Given these incentives to deviate we have
that there is no pure strategy equilibrium in which L accepts whenever
xL < x < xH .
Having characterized the pure strategy equilibria, we are left with the

problem that we do not have an equilibrium for the cases in which k ≤
F (xH−x̂)−F (xL−x̂)

1−F (xL−x̂) . There remains however the possibility of mixed strategy
equilibria. We consider these next.

Characterizing the Mixed Strategy Equilibria

As always, to sustain mixing, we need to ensure that players are indifferent
over the alternative over which they mix.

Supporting mixing by L. In cases where in fact xL ≤ x < xH , L will
be willing to mix if the payoff to excluding given H’s mixing strategy
(rH × (0− kL) + (1− rH)× 1) is equal to her payoff from admitting (0).
That is, if:

−kLrH + 1− rH = 0

or

rH =
1

1 + kL
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Note, a feature that simplifies the analysis is that the probability with
which H needs to mix in order to keep L indifferent does not depend on
any aspect of L’s own strategy.6

Supporting mixing by H. In order for H to be willing to mix, we need to
find a function s(x̂+ t) such that:

Pr(ta ≤ t < tb|reject, x̂) = k

We can do this by working backwards . By settingR xH−x̂
xL−x̂ s(x̂+ t)f(t)dtR xH−x̂

xL−x̂ s(x̂+ t)f(t)dt+ 1− F (xH − x̂)
= k (13.2)

we can try to solve for some function s that always satisfies Equation
13.2. The tricky part of solving for s using Equation 13.2 is that we have
to deal with all these integrals over s. It turns out however that there is
an easy solution if we simply assume that the function s does not depend
on t. In particular if we do that, then we can take s(x̂ + t) outside of the
integrals, yielding:

k =
s(x̂+ t)

R xH−x̂
xL−x̂ f(t)dt

s(x̂+ t)
R xH−x̂
xL−x̂ f(t)dt+ 1− F (xH − x̂)

(13.3)

=
s(x̂+ t) [F (xH − x̂)− (xL − x̂)]

s(x̂+ t) [F (xH − x̂)− (xL − x̂)] + 1− F (xH − x̂)
(13.4)

and so:

k(s(x̂+t) [F (xH − x̂)− (xL − x̂)]+1−F (xH−x̂)) = s(x̂+t) [F (xH − x̂)− (xL − x̂)]

and

s(x̂+ t) =
k
1−k (1− F (xH − x̂))

F (xH − x̂)− F (xL − x̂)
Note that, in fact, as we assumed, s(x̂+ t) does not depend on t.
Given the steps we have just followed, you should be able to prove the

following claim without much difficulty:

6Exercise 162 turns out to be a bit trickier than this because in that case the proba-
bility with which one player (the government mixes) at the end of the first period itself
depends on the strategies that the other player takes (the investor) at the beginning of
the first period.
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Claim 160 The function s(x̂ + t) given by s(x̂ + t) =
k

1−k (1−F (xH−x̂))
F (xH−x̂)−F (xL−x̂)

guarantees that Pr(ta ≤ t < tb|reject, x̂) = k; furthermore, this function is
independent of t.

This claim you will see, finds some confirmation in the example given
on p106 of the original text. It also makes sense intuitively: it wouldn’t
make sense for L’s mixed strategy—which, recall from our discussion on
mixed strategies, is a function of H’s expected payoffs, (designed to make
H indifferent)—to depend on something that H can’t even observe: t. the
fact that s need not depend on t (in the range in which L mixes) makes it
easy to solve for s explicitly.7

Now, since mixing probabilities must lie between 0 and 1, an equilibrium
strategy of this form exists if and only if 0 ≤ s(x̂+t) ≤ 1 That is, if and only
if: 0 ≤

k
1−k (1−F (xH−x̂))
F (xH−x̂)−F (xL−x̂) ≤ 1. It is easy to check that 0 ≤

k
1−k (1−F (xH−x̂))
F (xH−x̂)−F (xL−x̂) ;

furthermore
k

1−k (1−F (xH−x̂))
F (xH−x̂)−F (xL−x̂) ≤ 1 if and only if k ≤ F (xH−x̂)−F (xL−x̂)

1−F (xL−x̂) .

Since clearly there is always a range for which 0 < F (xH−x̂)−F (xL−x̂)
1−F (xL−x̂) < 1

then there is always range of k ∈ (F (xH−x̂)−F (xL−x̂)1−F (xL−x̂) , 1) in which k is too
large for this mixed strategy equilibrium to be supported.8 In these cases
the pure strategy identified above can be supported. However, in the range
k ∈ (0, F (xH−x̂)−F (xL−x̂)1−F (xL−x̂) ), we can support the mixed strategy equilibrium
(and the pure strategy identified above can not be supported).
In the latter case, where k ∈ (F (xH−x̂)−F (xL−x̂)1−F (xL−x̂) , 1) we have then a pair

of strategies that involves mixing by H and a mixture of pure strategies
and mixed strategies for L (depending on the true value of t) that are each
best responses to each other given Bayesian updating (this is Part 2 of
Proposition I).
Furthermore we have established an essentially exhaustive set of equilib-

ria for this game.

13.2.3 An Exercise with Continuous Action and Type Spaces:
Bargaining Again

Consider now a bargaining situation between government and rebels with
the same utility functions as given above except this time the hard-core
parameter θ is distributed uniformly over [0, 1].
We want to work out propertyless of the WPBE.

7The “latitude’ that the authors refer to at this point in the text is a little trivial–L
may choose to have another functional form for s(x̂ + t) that does depend on t, but
only in such a way that it won’t actually change H’s beliefs (that’s the idea of “belief
equivalence.”)

8See Equation (3) in CS&S.
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We do so by jumping to the end of the game tree, placing names on the
actions on the first period, and given these, and working out the beliefs
and actions that are rational responses to the first period actions.
So: Say that in round 1 the government offers a∗1 and that this is accepted,

for sure, by type θi if and only if θi ≤ θ∗ (hence we assume monotonicity
and check this is OK later on). Note that we do not know what a∗1 and θ∗

are. Nonetheless we can work out the government’s posterior distribution
as a function of θ∗, f(θ∗).

• [Q1] What is f(θ∗)?

Given this distribution, the government in the second stage should offer
a∗2 to maximize expected payoffs in the second stage:

R a∗2
θ∗ f(θ

∗)(1− a∗2)dθ.
If we take the first order conditions of this problem, we work out what

will be offered in the second period, conditional upon θ∗. Thus we find
a∗2(θ

∗).

• [Q2] What is a∗2(θ∗)?

Next we want to find θ∗. We now know that in time 1, a player with
type θ∗ will be indifferent between accepting a∗1 and being offered (and
accepting9) a∗2(θ

∗) the following period if a∗1 − θ∗ = δ(a∗2(θ
∗) − θ∗). This

condition lets us solve for θ∗.

• [Q3] What is θ∗?

• [Q4] Be sure to confirm that the monotonicity assumption holds: that
players with θi < θ∗ will prefer to accept a∗1, and players with θi > θ∗

will reject a∗1.

We now want to find a∗1. In time 1 then, the government chooses a
∗
1

knowing that this will be accepted by types for whom θi < θ∗ and rejected
by the rest; that in the case of rejection, a∗2(a∗1) will be offered and that
this will only be acceptable to players with θi ≤ a∗2(a∗1). Hence a∗1 should
be chosen to maximize:Z θ∗(a∗1)

0

(1− a∗1)dθ +
Z a∗2(a

∗
1)

θ∗(a∗1)
(1− a∗2(a∗1))dθ +

Z 1

a∗2(a
∗
1)

(0)dθ

• [Q5] Maximize this and solve for a∗1.

Exercise 161 Identify a WPBE for this game and prove that it is in fact
an equilibrium.

9To check that acceptance is the right benchmark, you should ensure at the solution
that a∗1 − θ∗ > 0.
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Problem 162 Player I can invest some share, α1, of $1 in period 1 and
some share, α1, of another $1 in period 2. After each investment, the gov-
ernment has the opportunity to predate. Whether or not the government is
disposed to do so depends on information that is private to the government:
in particular while the government knows its type, the investor believes that
the government is a non-predatory type with probability p.
Non-predatory governments never predate. Their utility can be written

independent of investments as any decreasing function of the probability
that they predate.
Predatory types are willing to predate (but might not) and take some

share, βt, of the player’s investment; in this case their utility in that period
is given by βtαt.
Player 1 gets a per period return of lnαt + (1− αt) for any investment

in time t that is not predated. Otherwise he receives (1− αt). Assume that
all player know p, and that their overall utility is the sum of period 1 utility
plus period 2 utility, discounted by common discount factor δ with δ > p.
Search for a weak Perfect Bayesian equilibrium of the form: Player 1

optimally invests α1 > 0 in the first period and α2 in the second period and
holds beliefs about the government’s type in both periods consistent with
Bayes’ rule. The good government never predates (by assumption); the bad
government predates in the final period but with probability q, does not
predate in the first period. How much is invested in each period? Does the
likelihood of predation rise or fall over time? How do the investor’s beliefs
about the Government’s type change over time?

13.3 Refinements

Part of the problem raised in the last discussion is that we did not have rea-
sonable restrictions to exclude strategies that require unreasonable actions
to be taken “off the equilibrium path.”
A stronger equilibrium requirement is that in each continuation game

(the game that begins at an information set (not strictly a subgame)),
the restriction of (σ, µ) to that continuation game must induce a Nash
equilibrium in the continuation game. This in a sense ensures that if a
subgame is reached (that shouldn’t be reached!) we have that players play
optimally. A second is that at all information sets ι, all players (other than
player j) have common beliefs, µj(ι) about the type of player j. In the
context of the game above, this means that Player B, should have the
same beliefs about whether or not an insult was meant when he comes to
make his choice as does Player A. In imposing such extra conditions we can
augment the notion of Weak Perfect Bayesian Equilibrium by introducing



170 13. Solving Extensive Form Games of Incomplete Information

restrictions on beliefs and on strategy at points off the equilibrium path,
such refinements produce the notion of “Perfect Bayesian Equilibrium.”10

If you examine the example given in the last section of judicial decision
making you will see that in this case all actions that are off the equilibrium
path for some type are on the equilibrium path for another type. This
allows the second player to apply Bayes’ rule even of the equilibrium path.
However, forming such beliefs is not possible in all games. In response a

series of refinements have been developled. We examine two.

13.3.1 Extensive Form Trembling Hand Perfection

The following approach is intuitively appealing and has the advantage of
being well defined for Bayesian as well as more general games of incomplete
information.
The approach involves checking to see what sort of strategies are robust

to the possibility that players make mistakes that randomly throw play
off the equilibrium path. The idea is that all players know that “hands
tremble” (and have common beliefs over the distribution of these trembles)
and will take account of this possibility when they make their choices. In
particular they may be slow to choose options whose payoffs rely on a
partner implementing his strategy perfectly, even if it is in the partner’s
interest to do so.
In our discussion of the solution concepts for normal form games, we

introduced a solution concept that is robust to such trembles: “perfect” or
“trembling hand perfect” equilibrium. We gave the following definition:

Definition 163 Strategy profile σ is a “trembling hand perfect equi-
librium” if there exists a sequence (σn)∞n=0 À 0 that converges to σ such
that for each i, σi is a best response to each σn.11

Now, for extensive form games we might expect that trembling hand
perfection would also ensure sub-game perfection since, given trembles, all
subgames are reached with positive probability.
However, this is not true. By requiring only that σi be a best response

to σn we endow players with a certain arrogance: they choose strategies
without taking into account that they themselves might tremble. Hence
when they choose their strategies they may exclude the possibility that
some subgames are reached, namely those subgames that they can eliminate
due to their own steady hand strategies. As a result, this arrogance can

10Note however that the definition of perfect Bayesian equilibrium varies and the term
is often defined with respect to particular games being modelled.
11The notation “(σn)∞n=0 À 0” should be interpreted as: every element in σn (the set

of probability distributions at each information set) accorded strictly positive weight to
all actons in its support.
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FIGURE 13.2. Tembling Hand Perfection does not guarantee Subgame Perfection

lead to the selection of some Nash Equilibrium strategies that satisfy our
trembles restriction but that are not subgame perfect.

Example 164 Interrogators look for information from Prisoner 1, then
from Prisoner 2, then from Prisoner 1 again. Prisoner 1 has two chances
to cover up or to talk; Player 2 has one chance. If both keep quiet then they
both do well. If one of them talks then the payoffs depend on who talked
and when. The game is represented below in Figure 13.2.
In this game it is easy to see that σ1 = (C1, C3), σ2 = (C2) is the unique

subgame perfect Nash equilibrium; it also satisfies our trembles concern.
However the Nash equilibrium (σ1 = (G1, G3),σ2 = (G2)) also satisfies
our restriction on trembles. If Player 1 believes that there is high probability
that Player 2 will play σ2 = (G2) then the strategy σ1 = (G1, G3) is a best
response. Furthermore, if Player 2 thinks that there is a high chance that
Player 1 will play σ1 = (G1,G3) (and thinks that, should, 1 play C1 by
mistake that σ1 = (C1, G3) is much more likely than σ1 = (C1, C3)), then
σ2 = (G2) is a best response for him. The problem is that conditional upon
playing C1, player 1 rules out the possibility that he will have to choose
between C3 and G3. A little more modesty about his possible errors at his
first choice node may lead him to make better decisions.

We need to find a way then to allow Players to choose optimal strategies
even as they take account of the possibility that they might tremble. Con-
ceptually this is a little difficult because we want a given agent to choose
decide to implement a strategy conditional upon the possibility that he will
not in fact implement that strategy. The solution that has been proposed
to the conceptual problem is to create an “agent normal form” of an
extensive form game.
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Definition 165 The “agent normal form” of an extensive form game
is a normal form game played by a set of “agents” representing the players:
in particular, each player has one agent that can take actions at each of his
information sets but each agent has the same preferences as the player he
represents.

The idea of the agent representation is to break down some of the internal
dependencies that a single player may impose on his own strategies; in
particular with each agent acting independently, but all in the interests of
the player, one agent can “fix up” the errors made by another (hence, the
optimality of a player’s behavior strategy is equivalent to optimality for
each of his agents, treating the strategies of the player’s other agents as
fixed).
Equipped with this definition we can now define a stronger notion of

trembling hand perfection:

Definition 166 Strategy profile σ is an “extensive form trembling hand
perfect equilibrium” of a finite extensive form game, Γ, if it is a trem-
bling hand perfect equilibrium of the agent normal form of Γ.

Since the condition requires that each agent optimally chooses an action
at every information set, the condition guarantees that any extensive form
trembling hand perfect equilibrium is also sub game perfect.12 We will see
next that not all subgame perfect equilibria are extensive form trembling
hand perfect: this then implies that trembling hand perfection is a refine-
ment of subgame perfection. Furthermore it is not such a strong refinement
that it prevent us from locating equilibrium, since we can show existence:
every finite extensive form game has an extensive form trembling hand
perfect equilibrium.13

Let’s now look at an example of where this might be useful. The following
example is based on work by Selten and Picasso.

Example: Selten’s Horse

The president wants the leader of the opposition dead. He can choose be-
tween personally hiring an assassin to do it, or asking some loyal stooge to
hire the assassin. Either way, the assassin will receive the contract anony-
mously and have to decide whether to carry out the requested assassination

12 Indeed we can show a stronger result, that if σ is extensive form trembling hand
perfect, then it is also part of a “sequential equilibrium”. More on this below.
13 In fact, this existence result follows directly from the existence of a trembling hand

perfect equilibrium. Since for any extensive form game an agent normal form represen-
tation exists, and as all normal form games have trembling hand perfect equilibria, we
have that extensive form tembling hand perfect equilibria exist.
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without knowing whether the President gave the order directly or not. And
once the job is done it will become clear to all who gave the orders.
The assassin, we assume, has a particular dislike of the stooge but de-

pends on the President for survival.
Now if the assassin carries out a direct order from the President he is in

a great position, having done the President’s bidding (plus, if the President
ever tries to turn on him, he’s got some dirt on the President!). If he refuses
to do it he’s still got some dirt on the president, which is always useful and
at least make it difficult for the president to turn on him.
If in fact the message comes from the stooge, then the situation is differ-

ent: in that case, by accepting, the assassin doesn’t get into the President’s
good books. But if he refuses, he gets some dirt on the stooge, a good thing.
The stooge and the President have the same preferences over outcomes:

Both would like to see the opposition assassinated and both would rather
that the order come from the stooge rather than from the president. Both
will be particularly upset though if the order is given but not followed
through, especially in the case where the president and his regime get com-
promised by having given the order
The game is illustrated in Figure 13.3.
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FIGURE 13.3. Selten’s Horse

Now for the game in Figure 13.3, each player only has one information
set and has two pure strategies: given by (H,G), (h, g), (A,R) for the
President, the Stooge and the Assassin respectively. Let us write out the
behavioral strategies of the players explicitly in terms of the probability
distributions over these pure strategies. Hence for example a strategy of he
form σPresident = (.2) should be interpreted as: “The President playsH with
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probability .2 and plays G with probability .8.” A strategy profile might
then be σ = (.3, .1, .2) interpreted as “President plays H with probability
.3, the Stooge plays h with probability .1 and the assassin plays A with
probability .2. ”
We can start the job of identifying the extensive form trembling hand

prefect equilibria by looking within the class of subgame perfect equilibria
(since trembling hand is a refinement).
Observe first that there are no strict subgames to this game, hence any

Nash equilibrium for the game as a whole is also a Subgame Perfect Nash
Equilibrium. So really we just need the set of Nash equilibria.
Note next that there are no pure strategy Nash equilibria. This can be

verified readily. So we have to consider equilibria in which players employ
mixed strategies. Using the approach in which we look for conditions under
which a player will be indifferent between any two of his pure strategies we
find that there are two families of mixed strategy Nash equilibria:
Type A equilibria: σ = (1, p, 1) for p < 1

2
Type B equilibria: σ = (0, 0, q) for q < 1

3 .

(You can work out why these are Nash equilibria, here we will try to
work out which of them are trembling hand perfect)

The type B equilibria are trembling hand perfect. To see this, consider
the perturbation for small ε ∈ (0, q) given by σ = (ε, 32

ε
(1−ε) , q − ε) for

q < 1
3 . Under any such a perturbation the Assassin is even less likely to

carry out the order and so the President and stooge have less incentive to
deviate. We now simply need to check that the Assassin will be willing to
mix. In fact, in order to show better how such sequence are determined, I
will show how we construct σ in order to ensure that the assassin will mix.
Keeping σpresident and σassassin fixes, let us define the strategy profile σ =

(ε, z, q− ε). We now determine what value z has to take in order to ensure
that the Assassin is willing to mix.
We first work out that Assassin’s beliefs given that he finds himself with

a choice to make and all players are using σ = (ε, z, q − ε). He needs to
work out the probability that the president sent the order. He know that
the probability that the President sends an order is ε, and the probability
that the Stooge sends an order is (1− ε)(z). Given that he has observed an
order he can then use Bayes’ rule to work out that the probability that it
was the President who sent the order is: ε

ε+(1−ε)(z) . Under these conditions
the stooge will be willing to mix if his payoff from Accepting is equal to his
payoff from rejecting. That is:

ε

ε+ (1− ε)(z)
4+ (1− ε

ε+ (1− ε)(z)
)0 =

ε

ε+ (1− ε)(z)
1+ (1− ε

ε+ (1− ε)(z)
)2

or
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z =
3

2

ε

(1− ε)

Hence, we have determined z as that value for which the assassin will
be willing to mix (and so we know that if z = 3

2
ε

(1−ε) , the assassin will be
willing to mix). Hence the type B equilibria are trembling hand perfect.
What of the type A equilibria?
They are not trembling hand perfect because if the President accidentally

asks the Stooge to send the order (no matter how unlikely this is), and if
the assassin accepts with probability anywhere close to 1, then the Stooge
has a unique best response to send the order. The problem is that the
conditions under which the Stooge is willing to randomize are fragile: they
require that his actions don’t make any difference in equilibrium. If he had
to make the choice in a context where the assassin is likely to do the job,
then he would no longer be prepared to randomize.
In this case the solution concept helps us distinguish between two very

different outcomes. In the one unreasonable outcome the order is given
and carried out by the assassin because he has perfect confidence that the
President will not accidentally give the stooge the order to send and that
the Stooge would, given the option, not elect to send such an order. In the
equilibrium that satisfies trembling hand perfection however, neither player
passes on the order because they can’t be sure the assassin will do the job.

13.3.2 Sequential Equilibrium

The final solution concept that we consider is the notion of “sequential
equilibrium.”
The formal description of sequential equilibrium is similar to that of

Bayesian equilibrium but the logic of the solution is in fact closer to trem-
bling hand perfection.
As in our discussion of Bayesian games, our solution is composed both

of a set of beliefs and a set of behavioral strategies.
Let µ(ι) denote a probability measure over the set of nodes in information

set ι. This describes the beliefs of the player taking a decision in information
set ι about what history has been implemented. We use µ to denote a
complete set of such probability measures, one for each information set,
that assigns a probability to each event in that information set. As before,
we let σ denote a profile of behavioral strategies.
Armed with these concepts we definite the family from which Sequential

equilibria are drawn: ”

Definition 167 An “assessment” in an extensive form game is a pair,
(σ, µ), that contains a profile of behavioral strategies, σ, and a belief system,
µ.
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Now comes the key concept to deal with the 0 probability events problem:

Definition 168 An assessment (σ, µ) is “consistent” if there is a se-
quence of assessments ((σn, µn))∞n=1that converges to (σ, µ) (in Euclidean
space14) but in which σn À 0 and each µn is derived using Bayes’ rule.

The most important feature here is that for every element in the se-
quence, σn À 0, this means that every branch in the tree can be followed
with some strictly positive probability. As a result, every information set
can be reached with some probability and so Bayes’ rule can be employed.
We now have the following solution concept:

Definition 169 An assessment (σ, µ) is a “sequential equilibrium” if
it is consistent and sequentially rational in the sense that for each player i,
moving at information set ι, player i’s expected payoff from playing σ(θi),
E[ui(ι)|ι, µ,σi(ι),σ−i(ι)] is at least as good for type θi as the expected payoff
from playing any rival strategy σ0 available to player i,E[ui(ι)|ι, µ,σ0i(ι),σ−i(ι)].

The bite of the requirement then is this: if (σ, µ) is a sequential equi-
librium then there must be beliefs that are really really close to µ that
are derived using Bayes’ rule strategies, σn, that are completely mixed and
that are really really close to σ. (Note that we don’t require that these σn

strategies themselves be optimal in any sense).

Problem 170 What are the sequential equilibria for the Selten’s horse ex-
ample discussed above?

The solution concept however not perfect insofar as it still allows for a
very wide class of beliefs that sometimes may lead to the failure to select
reasonable equilibria. In response a very large number of “refinements”
have been developed. Nonetheless, it has many nice properties and along
with trembling hand perfection is a good check on any equilibria that you
identify (indeed the last point indicates that it may be sufficient to check
either sequential equilibrium or trembling hand perfection)
The solution concept has nice properties:

• it exists (See Osborne and Rubinstein Proposition 249.1)

• it is a subset of Nash equilibrium

• in an extensive form game of perfect information (σ, µ) is a sequential
equilibrium if and only if σ is a Nash equilibrium

14Recall that each element in σ and µ is a vector of probability distributions for each
information set and hence just contains numbers between 0 and 1.
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• there is a one stage deviation principle also for sequential equilibria
(for more, see Osborne and Rubinstein Proposition 227.1)

• if there is no sequential equilibrium involving behavioral strategy σ,
then σ is not trembling hand perfect. (The converse is almost true:
if σ is not trembling hand perfect, then there exists no sequential
equilibrium involving behavioral strategy σ (see Kreps and Wilson
(1982b))).
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14
Solution Concepts for Cooperative
Games

14.1 Randomization and the Negotiation Set

Consider again the mixed strategy equilibrium identified for the battle of
the sexes game discussed in Section 9.5. The expected payoff at the mixed
strategy equilibrium is given by ui = 2
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3 . In

this instance, the payoff is lower than what could be achieved for either
player at either of the pure strategy outcomes. In other words, it is Pareto
inefficient.

Exercise 171 Is this always the case for the class of 2-player games where
each player has 2 pure strategies and there are 3 equilibria? Prove it either
way.

Assuming that players play (independently) mixed strategies (pI , pII),
the set of possible payoffs from this game is given by the set:

{2pIpII + 1.(1− pI)(1− pII), pIpII + 2(1− pI)(1− pII)|pI , pII ∈ [0, 1]}

If we draw this set it looks like this:
Eyeballing this set you should be able to identify the payoffs associated

with each of the Nash equilibria. What’s striking is that you can also see
that the only Pareto efficient points in this graph are given by the pure
strategy Nash equilibria: the independent randomization introduces a lot
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FIGURE 14.1. Expected utilities from independent randomizations.

of inefficiency because players select outcomes that yield (0,0) with positive
probability. In contrast, (and assuming von Neumann Morgenstern utility
functions) randomization over the Nash equilibria allows for payoffs along
the line joining points (1,2) and (2,1) that Pareto dominate all points that
are achievable through independent randomization. But to achieve these
points (in this example) requires that players agree on a joint randomized
strategy.
In other words, they have to cooperate somehow or other. In our discus-

sion of correlated equilibria we saw cases of implicit cooperation, executed
in a non-cooperative environment. But even there we saw that fuly efficient
outcomes were missed. Full cooperation would require mechanisms that in-
cite people to play in a particular way even when this can not be achieved
through joint randomization. Many believe that humans are smart enough
to get over problems like this, even when we don’t know exactly how they
do it.
This concern motivated von Neumann and Morgenstern to suggest that

a plausible solution concept is quite simply the set of Pareto optimal points
that could be achieved from joint randomization. They called this set the
“negotiation set,” although now it is more commonly called the “Pareto
set.”
Besides the fact that it is unclear how players succeed in reaching the

Pareto set, the most evident problem with the Pareto set as a solution
concept is that it is imprecise: it is typically “large.” Von Neumann and
Morgenstern argue that we are not in a good position to pick and choose
from within this set, rather, which element of a Pareto set is selected de-
pends on psychological features of the players that lie outside of the scope
of formal models.
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John Nash disagreed and offered a bargaining solution as a rival coop-
erative solution that is a refinement of the Pareto set. As such the Nash
bargaining solution can be thought of as a general solution concept to games
in which players can make binding commitments to each other.

14.2 The Nash Bargaining Solution

Nash’s study of “the bargaining problem” is a response to a concern similar
to that motivating Arrow.1 Nash solves the problem directly in a “utility
space” (rather than solving it in “outcome space” and then remapping back
to utility space) which he “anchors” in a status quo utility; in effect he is
looking to select some optimal improvement over the status quo (Arrow
assumes no such anchoring). Nash’s justification for using utility space is
that if any two outcomes deliver the same utility to all players, then for the
purposes of studying social choices, they should be thought of as equivalent
outcomes. In order to work in utility space, Nash needs to use richer util-
ity information than Arrow; he does so by assuming that players have
preferences that can be represented by von Neumann-Morgenstern
(Bernoulli) utility functions (henceforth VNM). The key things to note
about this assumption for the bargaining problem are the following:

1. Since the representation of an individual’s preferences by a VNM
utility function is “unique up to a monotonically increasing affine
transformation” (that is, if the utility function u represents an indi-
vidual’s preferences, so too does the utility function α + β × u for
β > 0) we are free to change the origin (α) and the units (β) of an
individual’s utility. Given that we have this freedom, the least that
we can expect of any theory is that its predictions do not depend on
the particular choice of utility origins or units.

2. This assumption also allows Nash to assume that the set X (whose
typical element is an n−tuple of utility values (u1, u2...un)) is convex.2

1This reading was not on the syllabus, if you can though do try and
read Nash’s short 1950 article on bargaining: “The Bargaining Problem”
Econometrica, 18:2, 155-162, on-line at: http://links.jstor.org/sici?sici=0012-
9682%28195004%2918%3A2%3C155%3ATBP%3E2.0.CO%3B2-H

2A convention that I ignore here is to use U to denote utility space to distiguish it
from X, the outcome space. The argument for assuming that X is convex is this: even if
the utilites that result from the set of “primitive” outcomes do not produce a convex set
in utility space, players could consider randomizing across these outcomes and evaluate
all resulting lotteries; from the assumption of VNM utilities we would then have that
the utility set over these lotteries would be convex.
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3. Finally, this assumption allows Nash to normalize the units of utility
space such that the status quo utility of each person is 0 (if you ever
want to use the Nash bargaining solution you will also have to make
this normalization! ).

4. What the assumption does not allow: while cardinality is intro-
duced, the assumption of VNM utility functions does not allow us to
make inter-personal comparability of utility

Like Arrow, Nash selects reasonable sounding conditions that he wants to
impose on the choice rule. Two conditions that we have not yet encountered
are:

• IIA (Note that this IIA condition is somewhat different to the IIA
condition we saw last week.) The choice function f satisfies IIA if
X 0 ⊂ X and f(X) ∈ X 0 implies f(X) = f(X 0). This means that if
you chose chicken when beef was available, you’re not going to change
your choice when you find out that they’re out of beef.

• Symmetry The choice function f satisfies symmetry if whenever X
is a symmetric set then f chooses the egalitarian solution.3 That is, if
the choice set does not distinguish between individuals then neither
does the choice rule.

Nash’s question then is: Can we find a social choice function that can
pick an element of X in such a way that the choice:

1. Is independent of origins and units

2. Is Paretian

3. Satisfies the symmetry condition and

4. Satisfies IIA ?

His answer is “Yes! We can find one and only one!”

That’s a nice answer as it means that the theory gives determinate pre-
dictions. Nash’s result is even more useful however because his existence
proof is constructive: he tells us not just that such a choice function ex-
ists, he also tells us what it is, namely: f(X) = arg max

x∈X+

(
Qn
i=1 xi). That is,

3To be a symmetric set we require that if x is in X so too is x0 where x0 differs from
x only by a permutation of its entries; for example, if (1, 2, 0) is in X so are (1, 0, 2),
(0, 1, 2), (0, 2, 1), (2, 1, 0) and (2, 0, 1).
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select the outcome that maximizes the product of the utilities of all the indi-
viduals. Equivalently we may write: f(X) = arg max

x∈X+

(
Pn
i=1 ln(xi)). Hence

we have:

Proposition 172 A choice function f is independent of utility origins and
units, Paretian, symmetric and independent of irrelevant alternatives iff it
maximizes n(x) :=

Pn
i=1 ln(xi).

Proof. I will only prove the “only if” part; try do the “if” part yourself.
To prove the “only if” part we need to show that no solution other than
Nash’s satisfies the four conditions; or equivalently, if any solution satisfies
the four conditions, that solution is equivalent to Nash’s solution. Define a
rival function g that satisfies the four conditions. Consider the two possible
choice sets X 0 and X 00 defined by:
X 0 = {x ∈ RN :

P
i∈N

xi
(f(X))i

≤ N}

X 00 = {x ∈ RN :
P
i∈N

xi ≤ N}

The set X 00 is symmetric and so from Pareto optimality and symmetry
we have g(X 00) = (1, 1, ..., 1). From the independence of utility units we may
transform the set X 00 into the set X 0 by multiplying each person’s utility by
(f(X))i, without this changing the (appropriately scaled) outcome. Hence
we have g(X 0) = (1× (f(X))1, 1× (f(X))2, ..., 1× (f(X))n) = f(X). Note
next that X ⊂ X 0. To see this note that for some x∗ ∈ X if x∗ 6∈ X 0 thenP
i∈N

x∗i
(f(X))i

> N and hence, since
P
i∈N

x∗i
(f(X))i

= x∗.∇n(f(X)) and since

N =
P
i∈N

(f(X))i
1

(f(X))i
= f(X).∇n(f(X)), we have that x∗.∇n(f(X)) >

f(X).∇n(f(X)). But so (x∗−f(X)).∇n(f(X)) > 0] Finally, since X ⊂ X 0

and g(X 0) ∈ X, we have from IIA that g(X) = g(X 0) = f(X) and so we
have what we were looking for: g(X) = f(X).

Math Interlude: What is going on with the triangles?

This last part of the proof is worth unpacking. The mathematics used here
will be useful later when we look at more bargaining problems and when
we turn to voting equilibria. Geometrically the idea is as follows: consider
what we know about the point f(X): First, it lies on the boundary of a
convex set X; Second, it lies on the boundary of a second convex set of
points, namely, the set {x : n(x) ≥ n(f(X))}; this set is termed the upper
contour set of x, let us call it Y .4 Third, from maximization we can show
that f(x) lies on a hyperplane H that separates X and Y ; that is: all the
points in X are on one side of H, all the points in Y are on the other

4Problem: How do we know that Y is convex?
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and X and Y only intersect at f(X).5 The Hyperplane H can be written
H := {x : x.v = b}, where v is a vector, orthogonal to the hyperplane,
called the “normal” vector of the hyperplane and b is a scalar and x.v is
the dot product of x and v. Any point y, lying “above” this hyperplane has
the property that y.v > b while any point z lying below has z.v < b. Now,
from maximization we can show that the gradient of n(.), written ∇n(x),
is orthogonal to the hyperplane and hence can serve as the normal vector
for H. Also, since we know that f(X) is on the hyperplane we know that
b = ∇n(x).f(X). Hence any point y, above H, including all the points in
Y (other than f(X)) has y.∇n(x) > ∇n(x).f(X); while any point z, below
H, including all points in X, have z.∇n(x) < ∇n(x).f(X)

Problem 173 Draw two convex sets in any position that touch at a point
and draw the line between them; mark the normal to the hyperplane as a
vector pointing in some direction away from the point of intersection of
the sets and orthogonal to the line. Using the definitions of “above” and
“below”given above, work out which area is “above” the line and which is
“below” it.

Reality Check

But will people apply the Nash bargaining solution? The Nash bargain-
ing solution, like Arrow’s result, assumes that we have information about
the preferences of individuals. What would we expect to see if we relied
upon individuals to volunteer this information themselves? To consider
this, imagine the situation where two players are bargaining over the di-
vision of a pie of “size 1,”6 that is, the utility possibility set is given by
{u1, u2 : u1 + u2 ≤ 1}. Now, consider the case where although each player
has status quo utility of u1 = u2 = 0, in practice u1 = 0 is not public
knowledge.
In this situation the Nash solution is found by maximizing: (1−u1)(u1−

u1). First order conditions then yield: u1 =
1+u1
2 , and u2 =

1−u1
2 .

With u1 = 0 reported truthfully, this gives the symmetric egalitarian di-
vision that you would expect. But consider a mechanism whereby Player 1
must declare her valuation of the status quo and then the Nash bargaining
solution is implemented (whenever implementing it produces an improve-
ment for both players). What should Player 1 declare? Assuming that she
is a utility maximizer with no scruples about lying, she should try to max-
imize u1 =

1+u1
2 conditional upon u2 =

1−u1
2 being positive. The solution

5Problem: Show that if the intersection of X and Y contained any other points then
f(X) does not maximize n(x) on X, contrary to our assumption.

6Why is “size 1” in quotes?
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is to declare u1 = 1 − ε (for some tiny number ε) and gain the full share
of the pie. That is, that she should declare herself quite happy with the
status quo and very unsatisfied with almost everything but the status quo;
in doing so she can argue that the only possible gains in trade occur when
she receives the full pie. The implication of the argument is that if we are
relying on players to report information about their preferences, then we
can not expect them to do it truthfully.
This observation introduces a large field of game theoretic work, that of

mechanism design or implementation theory; we discuss this next week.

14.2.1 The Nash Program

There has been a fairly active research program aiming to link cooperative
and non-cooperative game theory. Much of this work is aimed at deriving
the class of non-cooperative games that support outcomes from cooperative
games. The study of repeated games can be seen as one part of this pro-
gram. One of the interesting results of this program is the demonstration
that there is an equivalence between the Nash bargaining solution and the
outcome of the Rubenstein model, as discount factors tend to unity.

14.3 The Core

The Nash bargaining solution uses very little information about the struc-
ture of the underlying game being played, making use simply of the utility
possibility set that arises if all players strike deals collectively. We now con-
sider other solution concepts that share the assumption that players can
strike agreements with each other but that use richer information about
the ability of different subgroups of players to achieve beneficial outcomes
on their own.
Perhaps the most prominent solution concept for cooperative games is

“the Core.”

Definition 174 “The Core” is the set of outcomes Y ⊂ X with the prop-
erty that no coalition, C, can, by acting alone, achieve an outcome y that
every member of C prefers to some member of Y .

The Core concept is similar in spirit to the idea of Nash equilibrium ex-
cept that to be in the Core we require not just that no individual deviations
are beneficial to any individual but that no group deviations are beneficial
for any group. In this regard we may expect it to be more difficult to find
points in the Core than it is to find Nash equilibria. A second difference
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is that the core is defined over outcomes (or utilities) rather than over
strategies.

Problem 175 Consider a game in which some set of players i ∈ N =
{1, 2, ..., n}, (with n an odd number) have single peaked preferences over
outcomes in X = [0, 1] with ideal points given by (pi)i∈N . Assume that
any coalition of n+1

2 players can implement any policy in X but that no
transfers are possible. Which outcomes in X are in the Core?

Exercise 176 Consider a game in which some set of players i ∈ N =
{1, 2, 3, 4} have Euclidean preferences over outcomes in X = [0, 1] × [0, 1]
with ideal points given by (pi)i∈N where each pi is in X and no three ideal
points are collinear. Assume that any coalition of 3 or more players can im-
plement any policy in X but that no transfers are possible. Which outcomes
in X are in the Core?

14.4 The Core in Voting Games: Plott’s Theorem

The following is a discussion of Theorems 1 and 2 from Plott (1967). One
aspect that makes this model both quite different from most simpler mod-
els, but also lends the model its generality, is that the key information
that Plott uses about voter utilities is the “gradient vectors of their utility
functions” as defined at some status quo point, rather than their utility
functions directly or their “ideal points.” So, the first thing is to be really
clear about what those are.
The gradient vectors of utility function u : Rn → R1, are the vectors

that are found by taking the derivative of u(x) (where x ∈ Rn) with re-
spect to each component of x, and evaluating that derivative at x. The
gradient vector is written alternatively as ∇u(x) or Dux or, less compactly,
as (∂u(x)∂x1

, ∂u(x)∂x2
, ..., ∂u(x)∂xn

). It is alternatively referred to as the “derivative
of u at x” or as the “Jacobian derivative of u at x.” Each element of the
vector gives the sign and magnitude of the increase in utility from a change
in that element of x. Note that that gradient vectors can themselves be
represented as points in Rn.

Example 177 So let’s take an example: let u(x) = x1x2 + x1. Then
∂u(x)
∂x1

= x2 + 1 and
∂u(x)
∂x2

= x1. We then have ∇u(x) = (x2 + 1, x1).

Example 178 Here’s another example: let u(x) = −12(p1 − x1)2 −
1
2(p2 −

x2)
2. This is a quadratic utility function for someone with a ideal point at

(p1, p2). Then
∂u(x)
∂x1

= (p1−x1) and ∂u(x)
∂x2

= (p2−x2). Evaluated at x = 0,
we then have ∇u(0) = (p1, p2). This means that with quadratic utilities, the
gradient vector evaluated at 0 is the player’s ideal point.
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Gradient vectors are then used to evaluate attitudes to small changes to
x. In particular if we think of a tiny change to x in the direction b, the
change in player’s i’s utility is given by ∇u(0).b (where the “.” is the dot
product, although in Plott’s notation this is typically left out). This has a
simple interpretation: write out ∇u(0).b fully as ∂u(x)

∂x1
b1 +

∂u(x)
∂x2

b2 + ... +
∂u(x)
∂xn

bn and you can interpret this as the sum of the per unit gains in each
direction multiplied by the amount of change in that direction: in some
directions there may be a gain, in some a loss, but ∇u(0).b adds them all
up together and tells you whether there is a net gain or a net loss. We
can say that a player is “satiated” at x if ∇u(x) = 0 (note that this just
means that the first order conditions for x to maximize u are satisfied).
Plott assumes that an individual supports a “motion” b away from x if
∇u(x).b > 0, that is, if it increases the individual’s utility.
So now, getting back to Plott’s notation: the status quo is taken as fixed,

let’s just assume that it is 0. The gradient vector for a given individual i,
evaluated at 0, is written simply as ai instead of ∇u(0). This vector is just
a point in Rn. in fact, from the last example, with quadratic utility, this
point is the player’s ideal point.
We then have that the condition for one person to want a change in

direction b from 0 is that ai.b > 0. For a person to be indifferent we have
ai.b = 0, we need and for a person to be against ai.b < 0. Indifferent people
vote against. Geometrically this means that people on one side of a hyper-
plane with directional vector b and intercept a support motion b, people
on the other side oppose, and people on the hyperplane are indifferent. See
Figure 14.2 for examples.

a1

0 

b 

a2

a3

a4

a5 

FIGURE 14.2. In this example for ai.b > 0 for each of players 2, 3 and 4. But
ai.b = 0 for player 1 and ai.b < 0 for player 5.

So now, how about the conditions for more than one person to support
a motion...
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Plott and Decision-making Under Unanimity

The condition for all m individuals to support such a change is that:

a1.b > 0
a2.b > 0

:
am.b > 0

(14.1)

In fact though if you define the matrix A by:

A =

⎡⎢⎢⎣
a1
a2
:
am

⎤⎥⎥⎦
You can write the m conditions in line (14.1) more simply as:

Ab > 0 (14.2)

The first result then is that a point (in this case 0) will not be changed
by a group operating under unanimity unless there is a b ∈ Rn such that
Ab > 0. Hence a point is an equilibrium point if there is no b such that
Ab > 0.
To characterize the set of points for which this is true, Plott uses the

following result from linear programming: there is be no b such that Ab > 0
if and only if there is a y (with y ∈ R+ and y 6= 0) such that y.A = 0.7

The set of equilibrium points under unanimity then is the set of points for
which there is a (semipositive) solution to y.A = 0.

Example 179 To be sure we got this, let’s take an example: What’s the
set of equilibrium points under unanimity to a game with three players, 1,
2 and 3 with quadratic utility and ideal points given by (0, 0), (0, 1), (1, 0)
respectively?
Well, for any status quo, q, the matrix A is given by:

A =

⎡⎣ −x1 −x2
−x1 1− x2
1− x1 −x2

⎤⎦
7 If you want more on this last part, look up linear programming and duality theory.

Or write out some examples to convince yourself that it’s true. To think about this
problem geometrically its useful to note that yA = 0 ⇔ AT yT = 0T and hence the
condtion is that there is no hyperplane through the origin with directional vector y ∈ R+
(and y 6= 0) such that all the vectors formed by the rows of AT (which list the gradient
of each individual along a particular dimension) lie on the hyperplane.
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If a semipositive y satisfies yA = 0 this means there exist y1, y2, y3 ≥ 0
with at least one of them strictly positive for which:

−x1y1 − x1y2 + (1− x1)y3 = 0

−x2y1 + (1− x2)y2 − x2y3 = 0

A little rearranging gives:

x1 =
y3

y1 + y2 + y3
x2 =

y2
y1 + y2 + y3

.

Note that with y semipositive the right hand side of these equations are
non-negative numbers lying between 0 and 1. So we know for sure that we
must have x1, x2 ∈ [0, 1]. Also we must have x1 + x2 =

y2+y3
y1+y2+y3

≤ 1.
Necessary conditions for yA = 0 to have a semipositive solution then are:
x1, x2 ∈ [0, 1], x1 + x2 ≤ 1. This, you can see describes exactly the convex
hull of the player’s ideal points! furthermore, these necessary conditions
are also sufficient (prove it!). This is a proof of the claim that the Pareto
set of these three players is simply the convex hull of their ideal points.

Problem 180 Use this method to locate the set of equilibria under una-
nimity rule for 3 players who do not have Euclidean preferences.

Plott and Decision-making Under Majority Rule

The logic for the majority rule case is similar. Now we replace the condition
that there be no b such that Ab > 0 with the condition that there be no b
such that there exists a submatrixM of A, whereM has m+12 rows (and the
same number of columns) such that Mb > 0. All this is saying is that we
should not be able to find any direction for which we can find some majority
that supports a change in that direction. The remainder of Plott’s proof is
about locating the conditions that must hold for A for there not to be any
submatrix M such that there exists no b with Mb > 0.
His strategy of proof is the following:
(Lemma 1) Just confirms that an equilibrium requires that no majority

will support a change in some direction. This is almost definitional.
(Lemma 2) This confirms that at an equilibrium point, no matter what

direction you choose, one person will always be “indifferent” to a change in
that direction. Why? Because if some majority all strictly opposed a change
in direction b, then that same majority would all strictly support a change
in direction −b. And that can’t be (at an equilibrium point).
(Theorem 1) An equilibrium point has to be at the ideal point of one

player. The proof for this is a little awkward but the idea is quite easy.
First of all note that if an equilibrium is at the ideal point of a player,
then that person has a gradient vector of ai = (0, 0, ..., 0) and hence is
indifferent to any small change away from his ideal (since aib = 0 for all
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b). Now that sounds odd, but the idea is just that people’s utility functions
are flat at the top, so a tiny move doesn’t make any difference at all. Now
Lemma 2 tells us that for every direction someone has to be indifferent.
Clearly this is true if one person has a zero gradient vector. We want to
check that there is no other way that it could be true. Well, there is one
“rival explanation”: perhaps for each direction, b, there is someone with a
non-zero gradient vector aj that is orthogonal to b (that is for all b, there
exists an aj 6= 0 such that ajb = 0) (see Figure 14.3). Now for each person,
j, with non zero aj , there is only a finite number of directions for which
ajb = 0. So, with a finite number of players, this orthogonality argument
can only give the right answer for a finite number of directions. We are free
however to consider a change in any direction (see Figure 14.4). If we just
choose a change that is not orthogonal to the gradient vectors of any of
the players we can rule out this rival explanation. (Note that when reading
Plott’s proof, there is at this point an error on the third last line of p. 797:
ainbn → −αi should read: ainbn 6= −αi).

ai 

0 

b 

ai=0 

b 

FIGURE 14.3. Two ways in which we can have aib = 0. In the left figure aib = 0
because ai = 0; in the right ai 6= 0 but ai is orthogonal to b and so aib = 0 again.

(Lemma 3 and its corollary) These simply provide conditions for a system
of equations to have a solution.
(Lemma 4) States that at an equilibrium point, for any person i that is

not satiated, if that person is indifferent to a move, b, from the status quo,
then so is someone else (and someone other than the one person that we
already know to be satiated). The idea is that if this is not true, then you
can find some other movement that will be acceptable to some majority
that includes i plus some group of people that supported b. See Figure 14.5.

(Lemma 5) Lemma 5 pushes the logic of Lemma 4 one step further to
claim that at an equilibrium if you choose any person i (other than the
one person who we know to be satiated) then there is at least one other
person whose gradient vector lies on a line through ai and 0 (although not
necessarily on different sides of 0).
For the two dimensional case we already have this from Lemma 4. And in

any number of dimensions it will be true that if two non zero vectors lie on



14.4 The Core in Voting Games: Plott’s Theorem 191

ai 

0 

b 

ai=0 

b 

b' 

b''b''

b' 

FIGURE 14.4. In the left panel where ai = 0 we see that aib = 0 for all of b, b0

and b00. In the right panel we have for ai 6= 0 that aib = 0 only for the two vectors,
b and b0 that are orthogonal to ai but not for b00 which is not. There are clearly
lots of vctors like b00 that we can choose.

the same line then if one is orthogonal to b, so will be the other (formally, if
ai = λaj and if ajb = 0, then, clearly, aib = λajb = λ0 = 0). In more than
two dimensions it is possible that two non zero vectors are both orthogonal
to b without that implying that they lie on the same line. This then is a
rival hypotheses much like the one we saw in Theorem 1. However, as in
Theorem 1, since we are free to choose any b from a whole infinite set of
them, the conditions for this rival hypothesis are just too hard to satisfy.
(Theorem 2) Theorem 2 just pushes the logic in Lemma 5 a final step

further to say that pairs are not just sitting on the same line, but that
they are on opposite sides of the same line: if you take the whole collection
of people (except for the one person who we know to be satiated) and if
none of these are satiated themselves, then you can divide them all up
into pairs for whom each person in each pair lies on the opposite side of
a line through 0 as the other person in his pair. The logic of the proof is
illustrated in Figure 14.6.8

The result of Theorem 2 then is that we require exceptionally strong
conditions upon the distribution of these gradient vectors in order to have
an equilibrium point.
Finally, its pretty easy to see that if these (exceptionally tough) condi-

tions are satisfied, that this sufficient for the status quo to be an equilibrium.
This follows because for every person in favor of any movement you have
another person against. That guarantees m2 people against each movement.

8Note that in these figures, Plott’s set (q) is given by a1 and a3 in the left panel and
by a1 in the right panel. Plott’s set (l) is empty in the left panel and contains a3 in the
right panel. Note that there is the same number of elements in q and l in the right panel
but not in the left panel.
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a1

0 

b 

a2a0 

a3 

a4 

a1 

0 

b' 

a2 a0

a3

a4

(P)={a1, a2, a3} 
(P)={a1, a2, a3} 

FIGURE 14.5. In the left panel a1b = 0 but there is no one else (except 0) for
whom aib = 0. Hence we can find a movement that everyone in (P ) supports.
Such a direction is illustrated in the right panel.

And of course the guy in the middle is against everything. so that gives a
majority against every movement.

14.5 The Shapley Value

The final solution concept that we will consider for cooperative games,
albeit briefly, tries to relate the size of a share of the pie that accrues
to an individual in a cooperative setting to that individual’s contribution
to the size of the pie. This sounds reasonable. The tricky part though is
that the contribution of an individual to the size of a coalition’s pie will
likely depend on what other people are already in the coalition. Perhaps
a player’s contribution is large if some other player is also contributing
but small otherwise, if so then perhaps the measurement of that other
player’s contribution should take account of his impact on the first player’s
contribution. And so on. The idea of the Shapley value (for cooperative
games with transferable utility) is that a value can be associated with each
individual if we average over the whole set of marginal contributions that
she could make to every coalition that does not contain her already. Letting
R denote the set of all possible ordered sets of the players in N , with typical
element R, and letting Si(R) denote the set of players that precede player
i in the ordered set R, we can write the Shapley value, ψ, formally as:
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a1

0 

b 

a2

a3 a4 

a0 

a1 

0 

b 

a2 

a3

a4

a0

b' 

FIGURE 14.6. In the left panel a1 and a3 are on the same side of 0. This lets
us find a b0 that 1, 2 and 3 all support. Not so in the right panel: here, for any
b0, if 1 supports it then 2 is against it. (We do not claim that a0 is therefore an
equilibrium; why?)

ψi(N, v) =

P
R∈R

[v(Si(R) ∪ {i})− v(Si(R))]

|N |!

Remark 181 Note that

X
i∈N

ψi(N, v) =

P
R∈R

∙P
i∈N

v(Si(R) ∪ {i})− v
P
i∈N

(Si(R))

¸
|N |!

=

P
R∈R

[v(N)]

|N |!
= v(N)

Assuming that player’s do not make negative contributions to groups, this
observation allows us to define a “power index” in which we accord to each
individual i a power score, αi, where αi ∈ [0, 1] and

P
αi = 1:

αi =
ψi(N, v)

v(N)

This index (just one of many power indices) is called the Shapley-Shubik
power index.
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Exercise 182 Consider a three person voting game in which players have
transferable utility and a majority of votes is sufficient to determine any
allocation of a pie of size 1. Write down the Shapley values for the games
in which the voting weights of players 1, 2 and 3 are given respectively by
{51, 48, 1}, {50, 49, 1}, and {49, 49, 2}. (note that the Shapley value is a
vector in each case!

Remark 183 The Shapley value can be uniquely derived axiomatically al-
though the axioms are arguably less compelling than Nash’s. For details see
Osborne and Rubinstein 14.4.2.

There are a number of known relations between the Shapely value and
the core. On of these is the following:

Definition 184 A game hN, vi is “convex” if for every i ∈ N , for all
B ⊂ A, with i 6∈ B:
v(B ∪ {i})− v(B) ≤ v(A ∪ {i})− v(A)

Note that the term convex here is used somewhat in analogy to the
notion of a convex function: The marginal affect of adding any player to a
coalition is larger when the coalition is already large.9 As you may expect
from convexity, the coalition in which each individual’s marginal effect is
largest is the grand coalition. This feature leads to the following result:

Proposition 185 (MWG 18.AA.1) If a game hN, vi is convex, then the
core of hN, vi is non-empty, and in particular, ψ(N, v) lies in the core.

Proof. It is enough to show that there is no strict subgroup,M ofN, such
that v(M) >

P
i∈M ψi(N, v), that is that the total resources obtainable by

M are higher when they receive Shapley allocations from the full game than
they can achieve on their own. In fact, relying on the fact that v(M) =P

i∈M ψi(M,v) we are done if we can show that for each i, ψi(M,v) ≤
ψi(N, v).
Consider the case whereM differs from N only by the exclusion of player

j: N =M∪{j}. Let R denote the set of all possible orderings of the players
in N and let R0 denote the set of all possible orderings of the players in
M . Let R0 ⊂ R denote the set of N !/2 orderings in which player j appears
after player i. Note that the set , and let there correspond N orderings in
R
Note that from convexity we have that for any R ∈ R\R0:

9To see the intuition for the analogy, note that were there a continuum of homogenous
individuals, and a twice differentiable characteristic function that depends only on the
number of individuals in a coalition, n, then we would have ∂2v(n)/∂n2 ≥ 0.



14.5 The Shapley Value 195

[v(Si(R) ∪ {i})− v(Si(R))] ≥ [v(Si(R\{j}) ∪ {i})− v(Si(R\{j}))]
(14.3)

Note also that for each element R0 in R there exist N elements in R
(including R) that differ from R0 only in the position of player j. [For ex-
ample, for three players, only (1,2,3), (1,3,2) and (2,1,3) differ from (1,2,3)
only in the position of player 1 ]. Call the set of such elements C(R0). Using
Equation 14.3 N times, we then have that for any, R0:P

R∈C(R0)
[v(Si(R0)∪{i})−v(Si(R0))]

|N | ≥ [v(Si(R\{j}) ∪ {i})− v(Si(R\{j}))]
Summing up over R0 ∈ R and dividing by |M |! gives:P
R0∈R

P
R∈C(R0)

[v(Si(R0)∪{i})−v(Si(R0))]

|N|! ≥
P

R0∈R
[v(Si(R0\{j})∪{i})−v(Si(R0\{j}))]

|M|!
Now, letting R0 denote the set of all permutations of {N\{j}}, we can

remove double counting on both sides, and divide across by N to observe:

P
R0∈R

[v(Si(R
0) ∪ {i})− v(Si(R0))]

|N |! ≥

P
R0∈R0

[v(Si(R
0) ∪ {i})− v(Si(R0))]

|M |!

and hence

ψi(N, v) ≥ ψi(M,v)

These steps can be repeated for any subset M 0 that differs from N by
more than one individual.
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15
Turning Game Theory on Its Head:
Mechanism Design

So far we have concentrated on finding solutions to games. A lot of poli-
tics however is about finding games that produce particular solutions. For
example, in designing constitutions, law makers attempt to devise a set of
rules that produce outcomes that they deem good in some way (where the
procedures themselves may formally be considered part of the outcome).
In organizing campaigns, contracts or auctions, designers choose among
models on the basis of the incentives that they will have on the actions of
other players. The study of mechanism design is about how this is done,
and when mechanisms can be created that will produce outcomes deemed
desirable. We have already touched on the topic in our study of Arrow
and of the Gibbard-Sattertwaithe theorem in week 1, we now explore these
themes in greater depth, equipped with the solution concepts developed in
later weeks.
Formally, the design problem that we care about is a 4-tuple: hN,X, E, fi,

where:

• N denotes the set of players

• X denotes the outcome space over which players’ preferences are de-
fined, with typical element x;

• E is a set of environments, that describe the various ways the world
could be (there may be weapons of mass destruction in Iraq, there
may not; same sex marriages may be more important to voters than
foreign policy, or vice versa) If U denotes the set of all von Neumann
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Morgenstern utility functions, then we can have E = U |N |, with typ-
ical element U , a preference profile. Henceforth we will restrict at-
tention to environments that describe variation in preference profiles
only.

• f a choice rule that maps from E into X. Hence for example we have
x = f(U).

The design problem is the given, and what we want to identify is a game
form or mechanism. The game form, G = h(Ai)i∈N , gi is a pair: where
(Ai)i∈N is a collection of strategy spaces and g is an outcome function
×i∈NAi → X. The game form then clearly includes information on N
and X. From our formal definitions of a game, we can see that to fully
describe a game, we need to combine the game form with information of
player preferences over outcomes. We can then have a particular game Γ =
Γ hG,Ui .
Given these definitions, we can choose any solution concept, S, we like,

and describe the set of solutions to the game Γ, under this concept. Call
the set of solutions to the game Γ under solution concept S, S(Γ hG,Ui), we
then have that the set of outcomes when Γ is played is given by g(S(Γ hG,Ui)).
Our task now is to design a game form G that produces the desired out-
come. That is to choose G such that g(S(Γ hG,Ui)) = f(U).
In what follows I begin with an important result for political scientists

due to Gibbard and Satterthwaite (independently). I then introduce two
useful tools for the study of mechanism design: the revelation principle
and monotonicity. These are used to establish conditions and properties
of solutions to the design problem for voting games and auctions and to
establish general conditions for mechanisms to be “incentive compatible.”
We end the section with a final, pessimistic result on the possibility of
designing voluntary mechanisms for efficient bargaining in the presence of
uncertainty.

15.1 Manipulation and Voting: The
Gibbard-Satterthwaite Theorem

As an introduction to the idea of “mechanism design” problems we consider
a setting very similar to one studied by Arrow. Now instead of asking
“given information on players’ preferences, what social welfare function
satisfies desirable properties” we ask “what kind of social welfare function
would get people to reveal their preferences in the first place?” So now,
rather than assuming that all players’ preferences were public knowledge,
as in Arrow’s framework, we assume that they are private information and
that the aggregation mechanism has to rely on players’ reporting of their
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preferences. Under what situations will players have an incentive to behave
strategically? Or equivalently, when will the social choice function be such
that players have a dominant strategy to reveal their true preferences? If
players do not have a dominant strategy to reveal their preferences, then we
call the social choice function “manipulable.” The Gibbard-Satterthwaite
result tells us that players almost always have an incentive to misrepresent
their preferences in these collective choice settings.

Definition 186 A “social choice function” is a function that assigns
a single collective choice to each possible profile of agents’ types.

Proposition 187 (The Gibbard-Satterthwaite Theorem) Suppose that X
is finite and contains at least three elements and that all players have strict
preference relations over elements in X. Then a weakly Pareto efficient
social choice function is non-manipulable if and only if it is dictatorial.

Proof. (Informal1) Consider just two players {A,B} with strict pref-
erence orderings over three options, {a, b, c}. And consider any determi-
nate non-manipulable decision rule that selects one Pareto optimal outcome
given any pair of preference orderings. (Such a rule should take any pair
of declared preferences and select some Pareto optimal outcome, and given
the selection method of the rule no player should want to misrepresent her
preferences.) We now show that the only such rule is Dictatorship.
Consider first the situation where Players A and B declare themselves to

have the orderings given in Figure 15.1.

A B
a b 
b a 
c c 
 

FIGURE 15.1. GS-0

What outcome will be chosen? Option c is Pareto dominated, and so
either a or b must be selected by the rule. We don’t know which, but,
assume without loss of generality that option a is selected (a symmetrical
argument to what follows can be made if b is selected).
Now, fixing A’s preferences we note that Player B has a total of 6 “types”

that he can declare himself to be. These six types refer to each of the six
possible strict orderings of the three outcomes, marked B-I — B-V I.

1A more formal statement and proof of the theorem excludes the notion of Pareto
efficiency from the statement of the theorem but derives it from non-manipulability.
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FIGURE 15.2. GS-1

Step 1 :We want to see what the rule will select given each type for B. For
most of the types that B might declare, we can use the Pareto Principle to
eliminate outcomes.
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FIGURE 15.3. GS-2

Step 2 : We already know that if B declared Type III then option a
would be chosen. It follows from this however that a would also be chosen
if B declared Type IV as otherwise (i.e. were b chosen if Type IV were
declared) a Type III B would declare himself to be Type IV, contrary to
the assumption of non-manipulability.
But if that is true then it must also be that Declarations B-V and B-VI

also lead to outcome a, since if they led to anything else, a Type B-IV would
clearly be better off declaring himself a B-V or a B-VI to get anything but
a.
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FIGURE 15.4. GS-3

Hence no matter what rule is used, Player A’s most preferred option, a,
is selected irrespective of B’s preferences. Hence A is a dictator.

15.2 The Revelation Principles

In our discussion of the Gibbard-Satterthwaite we saw a negative result
for a game form in which individuals declare their “types”–we saw that
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unless the choice rule is dictatorial, then individuals will sometimes have
an incentive to misrepresent their own preferences.
This might not worry you very much if you think that in most games

player’s don’t report “types” but rather they have the option to play much
more complex and interesting strategies. And perhaps it won’t worry you
if what you care about is outcomes, not about truthful strategies.
The family of Revelation Principles tells you that in fact you should be

worried. These results provide one way of dramatically increasing the field
of application of results of this form.
The principles state that if a social choice function f can be S-implemented

by some mechanism in the sense that every equilibrium (using solution con-
cept “S”) is one of the social choices given preferences U , and every social
choice x ∈ f(U) can be attained as a solution to the induced game (using
solution concept “S”), then there exists a mechanism that “truthfully S-
implements” f . The notion of “truthfully S-implementation” is simply that
the strategy sets provided by the mechanisms is simply the set of preference
profiles and that there is an S-equilibrium in which all players (a) tell the
truth about U and (b) when they do this they select an element from f .2

Let us state three of them formally first before considering why they are
useful:

Proposition 188 [Revelation Principle for Dominant Strategy Equilib-
rium] Suppose there exists a mechanism


(Ai)i∈N , g(.)

®
that implements

f in dominant strategies, then f is truthfully implementable in dominant
strategies.

Proposition 189 [Revelation Principle for Nash Equilibrium O&R 185.2]
Suppose there exists a mechanism


(Ai)i∈N , g(.)

®
that Nash-implements f ,

then f is truthfully Nash-implementable.

Proposition 190 [Revelation Principle for Bayesian Nash Equilibrium
MWG 23.D.1] Suppose there exists a mechanism


(Ai)i∈N , g(.)

®
that imple-

ments f in Bayesian Nash Equilibrium, then f is truthfully implementable
in Bayesian Nash equilibrium.

These principles claim that if any game form (be it a one stage or multi-
stage game) has an equilibrium outcome, then that same outcome could be
achieved in equilibrium if players played some game corresponding to the
original game but in which their strategy options are declarations of their
types (that is, if they took part in a “direct” mechanism). Furthermore, if

2The language is a little confusing, but the fact that a mechanism truthfully S-
implements f does not mean that is actually implements f . The reason for this is that
“implementation” requires that all elements of f are S-equilibria and only elements of
f are S-equilibria. Truthful implementation simply requires that some S-equilibria are
elements of f . Others may not be. we see two cases below which emphasize this point,
one in the case of auctions and the second in teh case of majority rule.
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an equilibrium outcome is achievable in the original game then, the same
outcome can be achieved in equilibrium in a corresponding game in which
all players reveal their types truthfully.
But the real punchline comes with the contrapositive...

Contrapositive: [Revelation Principle for Bayesian Nash Equilibrium ]
Suppose that f(.) is not truthfully implementable in Bayesian Nash equilib-
rium, then there exists no mechanism


(Ai)i∈N , g(.)

®
that implements the

social choice function f(.) in Bayesian Nash Equilibrium.

From the contrapositive, the revelation principle then implies that if we
can identify a property of all outcomes in games (in a given class) induced
by direct truth revealing mechanisms (such as dictatorship, inefficiency, or
non-existence), then this property extends to the outcomes of all possible
games (in that class). In the next two sections we get some mileage out of
this principle.

Problem 191 A game form for the median voter result. We know
that if any game form implements the median voter result in dominant
strategies then there exists a game form in which each player has a dom-
inant strategy truthfully to reveal her “type”. For the median voter result
one game form is simply: let each player declare her ideal point. Then the
median declaration is implemented (Moulin 1980). Check that players do
not have an incentive to deviate.

15.3 Monotonicity

Some general results on implementability have been found using only infor-
mation on the properties of the choice rules. Some of the most important
results use information on the monotonicity of the choice rule.

Definition 192 Consider strategy profiles U = {ui} and U 0 = {u0i}. A
choice rule f :U → X is monotonic if for some x and y, if ui(x) ≥ ui(y)
implies u0i(x) ≥ u0i(y) for every i ∈ N , then x ∈ f(U) implies x ∈ f(U 0).

This is equivalent to the following somewhat more intuitive definition:

Definition 193 Consider strategy profiles U = {ui} and U 0 = {u0i}. A
choice rule f :U → X is “monotonic” if whenever x ∈ f(U) and x 6∈ f(U 0)
then there is some player i ∈ N and some outcome y, such that ui(x) ≥
ui(y) but u0i(x) < u

0
i(y).
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Hence, if x is selected by the rule given preference profile U but not
profile U 0, then x must have ‘moved down’ in the rankings of at least one
player. For example the following rule is monotonic:

Example 194 “x ∈ f if x is the preferred outcome of at least k players.”

This example includes simple majority rules and the Pareto rule. The rule
in this example uses information on preferences in a monotonic fashion. But
for many implementation problems, the rule is not based on the preferences
of individuals. For example imagine a situation where the rule is aimed at
eliciting whether a criminal is guilty of a crime with the following choice
rule:

Example 195 “f =“guilty” if i is guilty; f =“innocent” if i is innocent.”

In this case the rule is not monotonic if the preferences of guilty and
innocent players over the court’s two possible rulings does not depend on
whether or not they are guilty.
We can use the notion of monotonicity to establish the following powerful

result (due to Maskin, 1977):

Theorem 196 If f is Nash implementable then it is monotonic.

Proof. (Direct Proof) Assume that the game form G = hN, (Ai), giNash-
implements f . For some U choose x ∈ f(U) and assume there exists another
profile U 0 with x 6∈ f(U 0). The fact that x is a Nash equilibrium of the game
hG, Ui implies that there exists a Nash equilibrium strategy profile, a, with
g(a) = x and ui(x) ≥ ui(g(a0i, a−i)) for every player i and every alternative
action a0i, in i’s action set. However the fact that x 6∈ f(U 0) implies that
x is not a Nash equilibrium of the game hG, U 0i and hence there must
exist at least one player for whom there exists some action, a0 such that
u0i(x) < ui(g(a

0
i, a−i)). For such an a

0
i define y = g(a

0
i, a−i). We then have

that for this player, ui(x) ≥ ui(y) but u0i(x) < ui(y).

The contrapositive to this result is strong: if a rule is not monotonic, then
it is not Nash-implementable. In this case, as in Example 195 above, a rule
that depends on the characteristics of players other than on their prefer-
ences may not be Nash-implementable. The following example provides a
celebrated case of a non Nash-implementable choice function.

Example 197 (Solomon’s Problem) . Wise King Solomon is asked to
arbitrate a dispute between two women, A and B, both claiming a child
to be theirs. There are three outcomes, outcome x, in which the child is
awarded to A; outcome y, in which the child is awarded to B, and outcome
z, in which the child is awarded to neither (and executed). Solomon believes
that there are two possible preference profiles:
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U in which uA(x) ≥ uA(y) ≥ uA(z) and uB(y) ≥ uB(z) ≥ uB(x)
and
U 0 in which u0A(x) ≥ u0A(z) ≥ u0A(y) and u0B(y) ≥ u0B(x) ≥ u0B(z)
The idea behind these profiles is that under U , Woman A is the real

mother and she would rather have the child go to Woman B than to have
it killed; Woman B would rather have it killed than to go to Woman A.
Under U 0, Woman B is the real mother and the preferences are the other
way round. The social choice rule simply gives the child to the real mother;
formally, f : U → X is given by is the following:

f=

½
f(U) = x
f(U 0) = y

It is evident to check that this choice rule is not monotonic. The impli-
cation from Theorem 196 is that King Solomon could not develop a mech-
anism that would produce his desired result if the women play Nash.3

What of rules like that in Example 194? This rule is monotonic, but is
it implementable? Theorem 196 cannot answer the question. However, it
turns out that a close converse of Theorem 196 also holds. consider the
following notion of veto power:

Definition 198 A choice rule, f , has “no veto power” if x ∈ f(U)
whenever |{i ∈ N |ui(x) ≥ ui(y)}| ≥ N − 1 for all y in X.

This definition simply states that if N − 1 players all feel that x is one
of their most preferred outcomes, then x is one of the chosen outcomes.
With three or more players, monotonicity is enough to ensure Nash-

implementability for rules with no veto power. Formally we have the fol-
lowing:

Theorem 199 [Maskin 1977]Assume that |N | ≥ 3, and that f is monotonic
and has no veto power, then f is Nash implementable.

The proof of this theorem is constructive. I do not give the proof here
but the following example provides the main intuition behind it. Consider
a case of Example 194 in which there are just three player, deciding by
majority rule. This rule satisfies all the conditions for Theorem 199 and so
we have that it is Nash implementable.
Furthermore, we then have from the revelation principle that the social

choice is implementable directly, by players simply revealing their types (or
profles of types).
Sure enough, consider a case where the three players have strict prefer-

ences over A and B, assume without loss of generality that at least two

3 It does turn out to be possible to construct extensive form games in which there is
a solution to the problem that is implementable in subgame perfect Nash equilibrium.
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players prefer A to B. Now consider the following direct mechanism: all
players state a preference profile and if one outcome receives a majority of
supporters, then that outcome is selected. At least one Nash equilibrium of
this game involves two players that prefer A to B stating that they prefer
A to B. Hence this direct mechanisms selects the outcome that satisfies the
choice rule. However, this mechanism does not Nash-implement the choice
rule! Why? Because there exist other Nash equilibria of this game that
produce outcomes different to those that would be selected by the choice
rule. For example, the strategy profile in which all players state that they
prefer B (even though at least 2 prefer A to B) is a Nash equilibrium, since
any individual deviation from this strategy does not change the result.
What then would a mechanism look like that did in fact implement the

rule in Example 194? In Maskin’s proof he uses a rule of the following form
(written here in terms of the example at hand). Each players strategy set
is a triple: a statement about the profile of preferences, U ∈ U ; a statement
about their preferred outcome, x ∈ X; and a real number k ∈ R. In the
example we are considering if we use a to label the preference of a player
that prefers A to B, and b the preferences of a player that prefers B to A,
then a declared profile may take the form ha, b, ai or hb, b, ai; an example of
a strategy for a given player might be hha, b, ai , A, 5i. Note that all players
have the same strategy sets.
Now consider the following rule: IfN−1 players all play strategy hU∗, x∗, k∗i,

where x∗ = f(U∗), and the N th player plays some hU 0, x0, k0i, then imple-
ment x∗ if, according to U∗, the N th player does better out of x0 then
she does out of x∗, but implement x0 if, according to U∗, the N th player
actually does no better out of x0 than she does out of x∗. In all other cases,
identify the player (or some player) for whom ki ≥ kj for all j ∈ N and xi
(in other words, play the outcome identified by whoever chose the highest
number).
In this case all Nash equilibria implement the rule. In particular, the

strategy profile in which all players play hhb, b, bi , B, ki can not be a Nash
in this game since for any player that prefers A, some deviation of the form
deviation to hha, b, bi , A, ki will result in A being selected, and hence is
preferable for this player. assuming that the true preference profile for this
game is ha, a, biAll equilibria for this game are of the form hha, a, bi , A, ki
(note that deviations by the third player in a bid to propose B will always
be ignored since the majority has signalled that this player is a minority
player that prefers B).
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15.4 Incentive Compatibility

The previous results were centered on conditions for which players will
in fact play according to a strategy that is associated with their type in
equilibrium. This is the question of (Bayesian) incentive compatibility.
The next proposition helps pin down some quite general conditions for

Bayesian incentive compatible (a.k.a truthfully implementable) mechanism
design questions for the class of cases where players have quasi-linear utility
and their possible “types” can be represented on a single dimension of
variation. The results have some surprising implications for Auction theory,
summarized below in a version of the “revenue equivalence theorem.”
The proposition that follows states first (roughly) that when an incentive

compatible mechanism is used to regulate competition over some good,
people that value the good more are more likely to get it in equilibrium,
ceteris paribus ; the second is that an individual’s expected payoff from
participating in the mechanism depends on the payoff of the lowest type in
his distribution of types and on the function that assigns the probability
that different types will win; it does not depend on other features of the
mechanism. More formally:

Proposition 200 (Bayesian Incentive Compatibility) Given:

• Let θ denote the vector of true types in the population and θ̃ the vector
of declared types.

• Let pi(θ̃) denote the probability that player i receives the good as a
function of the declared types of all of the players.

• And let ti(θ̃) denote player i’s expected transfer as a function of the
declared types of all of the players.

• Assume that the expected utility of player i of type θi when the vector
of declared types is θ̃ is given by ui(θi|θ̃) := θipi(θ̃)− ti(θ̃).

Then the mechanism given by h(pi(.))i∈N , (ti(.))i∈N i is Bayesian incen-
tive compatible if and only if:

1. pi(θ̃i|θ−i) is non decreasing in θ̃i

2. the equilibrium expected utility for each i when all players report their
true types is given by:

ui(θi|θ) = ui(θi) +
Z θi

θi

pi(x)dx

Proof. In what follows we concentrate on one player and assume that
all other players play truthfully. This allows us to drop player subscripts
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for the proof of this proposition. [Hence we now use θ to denote the type
of a particular player rather than the vectors of all types.]
For the “only if” part: Incentive compatibility means that a player with

type θ does better when declaring θ than she would from declaring any
other type, say θ̃. That is:

u(θ|θ) ≥ u(θ|θ +∆)
= θp(θ +∆)− t(θ +∆)
= (θ +∆)p(θ +∆)− (θ +∆)p(θ +∆) + θp(θ +∆)− t(θ +∆)

or:
u(θ|θ) ≥ u(θ +∆|θ +∆) + p(θ +∆)(−∆) (15.1)

By the same logic a type θ +∆ does not want to imitate a type θ.
Hence:

u(θ +∆|θ +∆) ≥ u(θ|θ) + p(θ)∆
Combining these two conditions gives:

p(θ +∆) ≥ u(θ +∆|θ +∆)− u(θ|θ)
∆

≥ p(θ)

This gives the monotonicity we need to establish Part (1). Now taking
the limit of this expression as ∆ goes to 0 gives:

p(θ) =
d

dθ
u(θ|θ) = p(θ)

Integrating over [θ, θ] gives:Z θ

θ

p(x)dx =

Z θ

θ

d

dx
u(x|x)dx = u(θ|θ)− u(θ|θ)

And so (as we are assuming that all players play truthfully we can re-
moving the conditioners):

u(θ) = u(θ) +

Z θ

θ

p(x)dx

This establishes Part 2.
For the “if” part we essentially work backwards. Note that with ∆ > 0,

Part 2 of the proposition tells us that: u(θ)−u(θ+∆) = u(θ)+
R θ
θ
p(x)dx−

u(θ) −
R θ+∆
θ

p(x)dx =
R θ
θ+∆

p(x)dx. From monotonicity (Part 1 of the

proposition) we then have:
R θ
θ+∆

p(x)dx ≥
R θ
θ+∆

p(θ+∆)dx = p(θ+∆)(−∆)
and so u(θ) ≥ u(θ +∆) + p(θ +∆)(θ +∆) but this is precisely condition
(15.1) above that guarantees that the player does not want to declare θ+∆
instead of θ. The same logic holds for ∆ < 0.
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15.5 Application: The Revenue Equivalence
Theorem

Proposition 200 provides most of what we need to prove a simple version of
the revenue equivalence theorem. Revenue equivalence theorems state
that when players are risk neutral, the expected payment by each individual
and the expected revenue earned by an auctioneer do not depend on the
details of the auction design. For example the auctioneer can expect the
same revenue whether he chooses to use an English auction a Dutch auction,
a first or a second price sealed bid auction, an all-pay auction and so on.
More outlandish auction designs could also be considered.4

Proposition 201 (Revenue Equivalence Theorem) Consider the class
of auctions in which:

• A single object is on offer to be sold

• A set of n risk neutral buyers have types drawn independently from
the same distribution F with density function f(.).

• In equilibrium, the object always goes to the player with the highest
type

• If any player has the lowest possible valuation of the object then she
has a zero probability of winning it in equilibrium .

Then the expected payments by all individuals and the expected revenue
of the seller is independent of the details of the auction design.

Proof. From the revelation principle we can restrict our attention to in-
centive compatible direct mechanisms. Under the conditions of the propo-
sition we have from Proposition 200 that:
(1) u(θ) = u(θ) +

R θ
θ
p(x)dx

(2) u(θ) = θp(x)− t(θ)
Together these imply that u(θ) +

R θ
θ
p(x)dx = θp(x)− t(θ) and so:

t(θ) = θp(x)− u(θ)−
Z θ

θ

p(x)dx

= θp(x)− 0−
Z θ

θ

p(x)dx

= θ(F (x))n−1 +
Z θ

θ

(F (x))n−1dx

4Although see the next exercise for a caveat on the notion that the highest type
winner “always” wins in equilibrium. More carefully, in these games there is guaranteed
to be an equilibrium in which the hiughest type wins...
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And hence the expected payment by the player depends only on features
of the distribution of types and not on any features of the auction. But this
is true for all player types. The expected revenue is also constant since it
is the sum of these individual payments.

Exercise 202 (based on Osborne and Rubinstein 18.3) The second price
sealed bid auction truthfully implements (in dominant strategies) equilib-
rium outcomes from other auction mechanisms, such as the Japanese auc-
tion, with independent private values. Show first that it is a weakly dom-
inant strategy equilibrium for all players to declare their types truthfully.
Does this imply that this mechanism necessarily results in truthful type rev-
elation? Search for an example of an equilibrium from a two player (two
buyers) second price sealed bid auction in which the highest type does not
win the auction and players do not truthfully reveal their types.

15.6 Application II: Bargaining
(Myerson-Satterthwaite)

We now consider a general result on the universe of incentive compatible
bargaining mechanisms that could be used to structure a trade between
two parties when the values of the two parties are not known to each other.
Myerson and Satterthwaite (1983) ask: in such situations, is there any
mechanism, such as alternating offers type bargaining protocols, take-it-or-
leave it offers protocols, or any mechanisms that we have not yet thought of,
that can guarantee that trade will be ex-post efficient in situations where
there is ex ante uncertainty that gains can be made from trade?
Their answer is “No! At least not unless you introduce some outside

actor that either forces players to take part in the mechanism even if they
think it could be harmful for them, or some outside factor that intervenes
to pump in extra money or extract surplus monies.”

Proposition 203 (Myerson-Satterthwaite 1983) Consider the situa-
tion in which a buyer and a seller wish to engage in trade negotiations
over an object. The value of the object to the buyer is given by β where
β is distributed over the range [β,β] with strictly positive density b (and
corresponding cumulative density B) The value of the object to the seller is
given by σ where σ is distributed over the range [σ,σ] with strictly positive
density s (and corresponding cumulative density S). Assume furthermore
that there is a positive probability that trade would be efficient (i.e. σ < β).
But assume that there is also a positive probability that trade would be in-
efficient (i.e. β < σ).Then there is no efficient trading mechanism that
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satisfies individual rationality, incentive compatibility and budget
balance.

Proof. A buyer of type β has expected utility of:

Uβ(β) = Eσp(β,σ)β − Eσt(β,σ)

A seller of type σ has expected utility of:

Uσ(σ) = Eβt(β,σ)− Eβp(β,σ)σ

Adding the seller’s and buyer’s expected utilities together gives:

Uβ(β)− Uσ(σ) = Eσp(β,σ)β − Eσt(β,σ) + Eβt(β,σ)− Eβp(β,σ)σ

However, from Preposition 200 above we also have that the incentive
compatibility condition allows us to write buyer’s expected utility can be
written as a function of the utility of the buyer type with the lowest value;
the seller’s expected utility can be written in terms of the payoff to the
seller with the highest type.5 That is:

Uβ(β) = Uβ(β) +

Z β

β

Eσp(x,σ)dx

Uσ(σ) = Uσ(σ) +

Z σ

σ

Eβp(β, y)dy

And hence:

Uβ(β)− Uσ(σ) = Uβ(β) +
Z β

β

Eσp(x,σ)dx+ Uσ(σ) +

Z σ

σ

Eβp(β, y)dy

Using these two equations we can write net transfers as:

Eβt(β,σ)− Eσt(β,σ) =

ÃZ β

β

Eσp(x,σ)dx− Eσp(β,σ)β
!

+

ÃZ σ

σ

Eβp(β, y)dy + Eβp(β,σ)σ

!
+ Uβ(β) + Uσ(σ)

5Note that the application of the proposition is slightly different depending on
whether we are dealing with the buyer or the seller. This simply requires an inter-
pretation of what we mean by the “highest” and “lowest” types. For more on this see
Fudenburg and Tirole section 7.3 or MWG section 23.D.
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Net expected transfers then can be written:

EσEβt(β,σ)− EσEβt(β,σ) = Eβ

ÃZ β

β

Eσp(x,σ)dx− Eσp(β,σ)β
!

+Eσ

ÃZ σ

σ

Eβp(β, y)dy + Eβp(β,σ)σ

!
+ Uβ(β) + Uσ(σ)

But from budget balance we have that net expected transfers is equal
to 0, or:

0 = Eβ

ÃZ β

β

Eσp(x,σ)dx− Eσp(β,σ)β
!
+ Eσ

ÃZ σ

σ

Eβp(β, y)dy + Eβp(β,σ)σ

!
+Uβ(β) + Uσ(σ)

and hence we can write the sum of the expected utility of the lowest type
bargainer plus the highest type seller as:

Uβ(β) + Uσ(σ) = −Eβ

ÃZ β

β

Eσp(x,σ)dx− Eσp(β,σ)β
!

−Eσ

ÃZ σ

σ

Eβp(β, y)dy + Eβp(β,σ)σ

!
Now from the individual rationality constraint we have Uβ(β) ≥ 0

and Uσ(σ) ≥ 0 and hence, Uβ(β) + Uσ(σ) ≥ 0. We then have :

−Eβ(
Z β

β

Eσp(x,σ)dx−Eσp(β,σ)β)−Eσ(
Z σ

σ

Eβp(β, y)dy+Eβp(β,σ)σ) ≥ 0

Integrating by parts yields:

Eβ

µ
β − 1−B(β)

b(β)

¶
Eσp(β,σ)− Eσ

µ
σ +

S(σ)

s(σ)

¶
Eβp(β,σ) ≥ 0

[Note: That was the hardest step technically so far. For the first part
you need to use the chain rule: [

R b
a
f(x)dg(x)dx dg = [fg]ba −

R b
a

h
g dfdx

i
dx] to

show Eβ
R β
β
[Eσp(x,σ)] dx = Eβ

³
1−B(β)
b(β)

´
[Eσp(β,σ)]; and similarly for the

second part. Try it. If you run into problems I can send you the full steps.]

And collecting gives:
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EβEσp(β,σ)

∙µ
β − 1−B(β)

b(β)

¶
−
µ
σ +

S(σ)

s(σ)

¶¸
≥ 0

Writing the expectations out explicitly we have:

Z β

β

Z σ

σ

p(β,σ)

∙µ
β − 1−B(β)

b(β)

¶
−
µ
σ +

S(σ)

s(σ)

¶¸
s(σ)b(β)dσdβ ≥ 0

Next we use our final assumption: that bargaining is efficient. This
implies that p(β,σ) = 1 whenever σ < β and p(β,σ) = 0 whenever β < σ.
This lets us write our condition as:

φ :=

Z β

β

Z min(β,σ)

σ

∙µ
β − 1−B(β)

b(β)

¶
−
µ
σ +

S(σ)

s(σ)

¶¸
s(σ)b(β)dσdβ ≥ 0

Note: We have now used up all our assumptions, this means that to
complete the proof we have to find a contradiction. The contradiction is
this: contrary to our claim that φ ≥ 0, we will show that φ < 0. Here we
go...

Integrating over the seller’s type gives:

φ =

Z β

β

∙µ
β − 1−B(β)

b(β)
− σ

¶
S(σ)

¸min(β,σ)
σ

b(β)dβ

...which can then be expanded out to give:

φ =

Z β

β

∙µ
β − 1−B(β)

b(β)
−min(β,σ)

¶
S(min(β,σ))

¸
b(β)dβ

−
Z β

β

∙µ
β − 1−B(β)

b(β)
− σ

¶
S(σ)

¸
b(β)dβ

But using S(σ) = 0 the second part vanishes, yielding:

φ =

Z β

β

∙µ
β − 1−B(β)

b(β)
−min(β,σ)

¶
S(min(β,σ))

¸
b(β)dβ

To deal with the awkward min(β,σ)) term we split the range of integra-
tion over β into two parts, that above and that below σ. Within each of
these two parts we know the value of min(β,σ).
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φ =

Z σ

β

µ
β − 1−B(β)

b(β)
− β

¶
S(β)b(β)dβ+

Z β

σ

µ
β − 1−B(β)

b(β)
− σ

¶
S(σ)b(β)dβ

Tidying up gives:

φ = −
Z σ

β

[(1−B(β))S(β)] dβ +
Z β

σ

[(β − σ) b(β)− 1 +B(β)] dβ

= −
Z σ

β

(1−B(β))S(β)dβ + [(β − σ) (B(β)− 1)]βσ dβ

Note that as B(β) = 1 the second term drops out, leaving:

φ = −
Z σ

β

(1−B(β))S(β)dβ

With β < σ we have that
R σ
β
(1−B(β))S(β)dβ is positive and hence

the whole expression is negative (with β < σ the integral spans a positive
range, the quantities (1−B(β)) and S(β)take on a positive values for β <
β < σ < β).6 And this provides our contradiction.

How “general” is this result?

The result is general insofar as it applies to a very large class of mecha-
nisms. One limitation on its generality is that it assumes that the densities
of player types is everywhere positive over their range. We can show that if
this condition fails the result no longer holds (In fact, look at the next exer-
cise!). Another seeming limitation is that the proposition assumes that play-
ers have quasi-linear utility. This could however be seen as a strength of the
model–we have seen that positive results can be achieved in quasi-linear
environments even though they cannot be achieved in more general envi-
ronments. The Myerson-Satterthwaite theorem tells us that positive results
cannot be attained even in quasi-linear environments, hence they cannot
be guaranteed in more general environments in which quasi-linear environ-
ments are a subset (although possibly their are some types of preferences
such that some efficient mechanisms do exist in the presence of uncertainty).
Arguably too the model is limited to the extent that it only applies to bilat-
eral bargains rather than to the more general multilateral case. This type

6We can interpret the part within the integral as the probability that the buyer’s
valuation is greater than β multiplied by the probability that the seller’s is less than β,
which is the probability that type β lies in the range where trade is inefficient.
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of limitation is not severe to the extent that the domain of the limitation is
known–in applications we typically know whether we are dealing with two
person rather than multilateral bargaining; we might not know if the densi-
ties of players’ types are everywhere strictly positive. For generalizations to
settings with more players see [P. Cramton, R. Gibbons and P. Klemperer,
“Dissolving a partnership efficiently.” Econometrica 55 (1987), 615-632
http://www.cramton.umd.edu/papers1984-1989/87econ-dissolving-a-partnership-
efficiently.pdf].

Exercise 204 Find a mechanism that is efficient, budget-balancing, in-
centive compatible and that satisfies participation constraints when buyers
and sellers are drawn from “atomic” distributions (e.g. Prob(s = s) = p,
Prob(s = s) = 1 − p; Prob(b = b) = q , Prob(b = b) = 1 − q. (And prove
that your mechanism has these properties!)


