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Abstract: Fixed effects estimation, with linear controls for stratum membership, is often used to estimate
treatment effects when assignment propensities differ across strata. In the presence of heterogeneity
in treatment effects across strata, this estimator does not target the average treatment effect, however.
Indeed, the implied estimand can range anywhere from the lowest to the highest stratum-level average effect.
To facilitate the interpretation of results using this approach, I establish that if stratum-level average effects
are monotonic in the shares assigned to treatment, then the fixed effects estimand lies between the average
treatment effect for the treated and the average treatment effect for the controls.
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1 Introduction

Consider a setting in which study units belong to a collection of strata. Share p
j
of units in stratum j is

randomly assigned – or “as-if” randomly assigned – to receive treatment Di and outcome y
i
is measured

for each unit i. In this case, if p
j
varies across strata, treatment assignment is ignorable only conditional upon

stratum [1].
The need to condition in this way is common in both experimental and observational studies.

In experimental work, it arises if researchers employ block randomization with different probabilities within
blocks or if they employ multiple treatments with correlated probabilities [2]. It can also arise if they are
interested in spillover or network effects, where the probability of exposure to spillovers can vary across units
even though the direct treatment is randomly assigned [3]. In observational work, it arises, for instance,
if individuals self-select into treatment on the basis of observable characteristics [4].

In such settings – if assignment propensities are known – there are multiple procedures for generating
unbiased estimates of average treatment effects. Effects can be estimated within each stratum and then
averaged [5, section 6.1]. Unbiased estimates can also be generated using matching [6], or using treatment
interactions [7], propensity weighting [3], or doubly robust approaches [8].

In practice, however, a common strategy is to use ordinary least squares (OLS) to estimate

[ ]= + +y βd γ ε ,
i i j i i (1)

where di is the realized treatment assignment, β represents the effect of the treatment, and [ ]γ
j i

represents the
fixed effect for the stratum j to which i belongs. The key feature here is not the use of least squares but rather
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the fact that intercepts are used to account for stratum effects. Including intercepts for each stratum can be
thought of as a flexible strategy for including observable covariates, although, critically, in this form, it does
not allow for effect heterogeneity across strata. The approach is common in observational studies (see pre-
vious study [9] for examples) and has been recommended as a simple approach for experimental work also [5].
One recent contribution [10] replicates eight influential economics articles to highlight how common this
approach is.

If there are heterogeneous effects, however, estimates from this procedure are prone to bias [11].
Less well understood is when these biases arise and how important they are likely to be, with contributions
by Słoczyński [9], discussed below, a notable exception.

In this article, I address this interpretive challenge. I identify conditions under which the fixed effects
estimand – the quantity implicitly targeted by least squares estimation of equation (1) – is “close” to causal
quantities of interest.

In addition, I provide a proposition that establishes that if the share of units assigned to treatment in each
stratum is monotonic in stratum average treatment effects, then the fixed effects estimand is bounded by the
expected average treatment effect for the controls and the expected average treatment effect for the treated.

The utility of this result depends on the plausibility of monotonicity between assignments and treatment
effects.

Monotonic relations are guaranteed if there are just two strata. They may also arise, however, if both
treatment effects and assignment propensities reflect some systematic feature of units. For instance, under Roy
selection [12], units are more likely to opt into treatment if they expect benefits. Indeed, experimental design
might deliberately select assignment probabilities to reflect expected benefits [13]. More subtle logics might
also imply monotonicity. For instance, relatively popular children – with more network connections – might
be more likely to be indirectly exposed to an antibullying treatment that has been randomly assigned to
children, yet less likely to benefit from it [14]. In experiments to study in-group cooperation that use random
pairing between individuals, individuals from larger groups have a larger propensity to be matched with in-
group partners, but larger groups might also display different levels of in-group cooperation on average [15].

Absent monotonicity, the fixed effects estimator may be shooting at an estimand very far from standard
estimands of interest.

2 Setup

Let � { }= n1, 2, …, denote a collection of units and � { }= X X X, , …, s1 2
a collection of strata. Let i denote

an arbitrary unit in � . When there is no risk of ambiguity, I let j indicate an arbitrary stratum Xj. Similarly,
I use expressions such as ∑ p wj j j as shorthand for ∑ = p wj

s

X X1 j j
. Let nj denote the number of units, = ∕w n nj j the

share of units, and ( )∈p 0, 1
j

the share receiving treatment, in stratum j . I consider wj and p
j
to be known and

fixed, as might arise, for instance, from blocked random assignment. Let Di denote a random variable that
indicates whether unit i is assigned to treatment. Assume that within-stratum assignment to treatment is
ignorable.

Employing the potential outcomes framework [1], let ( )Y 1i and ( )Y 0i denote the value on some outcome
variable that unit i would take if allocated to treatment and control conditions, respectively. The causal effect
of the treatment on unit i is given by ( ) ( )= −τ Y Y1 0i i i . Letting � j denote averages over the set of units
in stratum j , define stratum-level average treatment effects:

� [ ]≡τ τ .j j i (2)

The outcome for a given unit is a random variable given by ( ) ( ) ( )= + −Y D Y D Y1 1 0i i i i i . Then, under
conditions described in the study of Rosenbaum and Rubin [1], the average treatment effect for units in
stratum j , τj, can be estimated without bias by the difference in average outcomes in treatment and control
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groups. Letting lower case letters denote realizations of random variables, we have

 � �[ ∣ ] [ ∣ ]= = − =τ y d y d1 0 .j j i i j i i (3)

I consider the following (sample) estimands:

� [ ]≡ =
∑
∑τ τ

w τ

w
,N i

j j j

j j

ATE
(4)

� �[ [ ]]{ }≡ =
∑
∑=τ τ

p w τ

p w
,D i d i

j j j j

j j j

ATT : 1i
(5)

� �[ [ ]]
( )

( )
{ }≡ =

∑ −
∑ −=τ τ

p w τ

p w

1

1

,D i d i

j j j j

j j j

ATC : 0i
(6)

where �N (similarly: � { }=i d: 0i
, � { }=i d: 1i

) averages over sets of units, and �D takes expectations with respect
to assignments to treatment.

Here, τ
ATE

corresponds to the average treatment effect across all units. Quantity τ
ATT

(resp. τ
ATC

) is
the expected average treatment effect on the treated (resp. controls), with expectations taken over realizations
of D. Each of these estimands can be thought of as weighted averages of the stratum-level treatment effects, τj.
What differs is the weighting: τ

ATT
(resp. τ

ATC
) places more weight on the treatment effect of strata with high

(resp. low) propensity of treatment.
Now consider an estimate of treatment effects resulting from using OLS to regress the outcome on

treatment and a set of indicator variables for each of the strata. In this case, fixed effects estimation returns
a weighted average of the estimates of stratum-level treatment effects:

( )

( )
=

∑ −
∑ −

τ

p p w τ

p p w
ˆ

1

1

.

j j j j j

j j j j

FE
(7)

Derivations for this expression are provided in Theorem 5 in the study of Ding [16] and equation (2) in the
study of Goldsmith-Pinkham et al. [2], both using Frisch–Waugh–Lovell theorem. In addition, I provide a direct
proof in supplementary materials (S1).

Observe that the weights in equation (7) reflect the variance in treatment assignment within strata,
not the share treated, within each stratum, and may be increasing or decreasing in the share treated.

The estimator is unbiased for the following estimand (see equation (9) in [11] for the two-stratum case):

� ( )
( )

( )
≡ =

∑ −
∑ −

τ τ

p p w τ

p p w
ˆ

1

1

.D

j j j j j

j j j j

FE FE
(8)

Here, the second equality follows from the assumption that p
j
and wj are fixed.

We can see from this that since least squares weights can take any value between 0 and 1 for any stratum,
depending only on the values taken by the collection ( )p

j
, τ

FE
can take any value between ( )τmin j and ( )τmax j .

Thus, as a general matter, there is no reason to expect that the least squares estimand is close to τ
ATC

, τ
ATT

,
or τ

ATE
, and although τ

ATE
lies between τ

ATC
and τ

ATT
, there is no guarantee that τ

FE
will.

Example 1. For a dramatic illustration, consider a case with three equal-sized strata (a b, , and c) in which
( ) =Y 0 0i for all units and

( )

( )

( )

= ∈ = −

= − ∈ =

= ∈ = +

Y i a p

Y i b p

Y i c p

1 3, for all ,

1

2

3

4

,

1 3, for all ,

1

2

,

1 3, for all ,

1

2

3

4

.

i a

i b

i c
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This case has strong symmetry in treatment and control. Half the units are in treatment, and half are in
control. The variation in propensities is the same in both groups. And = = =τ τ τ 1

ATE ATT ATC
. However, = −τ 1

FE
.

The sharp divergence of τ
FE

from the other estimands arises from the fact that stratum b has the greatest
treatment variance and so τb is weighted more heavily by τ

FE
than by τ

ATE
, τ

ATT
, and τ

ATC
. The example highlights

that there is no general guarantee that τ
FE

is close to quantities of interest and that a rule of thumb based on
shares in treatment and control can sometimes seriously mislead.

The example can also be used to illustrate a more subtle point: biases can arise even if all units have
identical assignment propensities if the shares assigned to treatment are, nevertheless, heterogeneous.
Consider a variation of this example induced by a “randomized saturation design” [17], in which there is
a prior randomization to determine whether share p

a
or share − p1

a
is assigned to treatment. Similarly for

stratum c. From an ex ante perspective, under this assignment scheme, all units are assigned to treatment with
probability 0.5 (assessed by combining the probability that a stratum is assigned to a given condition times the
probability that a unit is assigned to treatment given the stratum assignment). However, under each stratum
assignment, the shares assigned to treatment vary across strata and there is systematically varying variation
in treatment assignment across the three strata. The result is that τ

FE
diverges from the other estimands in the

same way as in the original example even though (ex ante) assignment probabilities are now homogeneous.

3 Results

Inspection of equations (4), (5) and (7) suggests three cases in which τ
FE
can be interpreted in terms of the other

estimands. First, as is already well appreciated, τ
FE

corresponds to τ
ATE

when treatment effects or shares
assigned to treatment are constant across strata. Second τ

FE
corresponds to τ

ATE
if propensity variance is

constant across strata, for instance, if there is some p such that for each j either =p p
j

or = −p p1
j

.
This might arise in a partial population design in which say, one-third are treated in one group and two-thirds
are treated in another. Third, one can see that ≈τ τ

FE ATT
for “rare” treatments (p small) and ≈τ τ

FE ATC

for “common” treatments (p large).
Proposition 1 establishes that if the shares of units assigned to treatment are monotonic in within-stratum

treatment effects, then τ
FE

lies between τ
ATC

and τ
ATT

.

Proposition 1. If for all j , ′j , ≥ ↔ ≥′ ′p p τ τ
j j j j , or if for all j , ′j , ≤ ↔ ≥′ ′p p τ τ

j j j j , then [ ]∈τ τ τ,
FE ATC ATT

.

Proof. Consider the case in which p
j
is monotonically increasing in τj and so ≥τ τ .

ATT ATC
The proof for the case

in which p
j
is monotonically decreasing in τj is similar.

We have

( )

( )
∑ ∑≤ ↔

−
∑ −

≤ ∑τ τ

p p w

p p w
τ

p w

p w
τ

1

1

.

j

j j j

j j j j

j

j

j j

j j j

jFE ATT

Equivalently (see Supplementary materials (S2)):

∑
⎛

⎝
⎜ ∑ − ∑

⎞

⎠
⎟ ≤

p w

p w

p w

p w
τ 0.

j

j j

j j j

j j

j j j

j

2

2

(9)

Note that the quantity in parentheses in equation (9) can be positive or negative. More specifically,

defining ≡ −∑ ∑bj

p w

p w

p w

p w

j j

j j j

j j

j j j

2

2
and ≡

∑

∑p*

p w

p w

j j j

j j j

2

:

≥ ↔ ≤b p p0 *.j j
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Exploiting monotonicity, let τ* denote a value such that ≤ ↔ ≤τ τ p p* *j j
. Then, since for any constant c,

∑ =b c 0j j , equation (9) can be written as:

( )∑ − ≤b τ τ* 0,

j

j j (10)

which we know to be true because ≥ ↔ ≤ ↔ − ≤b p p τ τ0 * * 0j j j .
The proof for ≥τ τ

FE ATC
proceeds similarly. □

A number of considerations are of interest with regard to this result.
First, monotonicity is not a necessary condition for [ ]∈τ τ τ,

FE ATC ATT
, as is easily shown with counter-

examples. The necessary and sufficient condition for ≤τ τ
FE ATT

is given in equation (9).
Second, while monotonicity ensures that τ

FE
lies between τ

ATT
and τ

ATC
, there is no guarantee that τ

ATT
and

τ
ATC

are close to each other or to τ
ATE

. Indeed, all else equal, the difference between these two is greatest under
monotonicity. In particular, given sets ( ) =τj j

s
1
and ( ) =p

j j
s

1
for s equal-sized strata, the difference −τ τ

ATT ATC

is maximized (resp. minimized) by a (bijective) mapping { } { }→h s s: 1, 2, … 1, 2, … for which ( ) =τj j
s

1
is mono-

tonically increasing (resp. decreasing) in ( )( ) =p
h j j

s
1
. More positively, whether or not τ

ATT
and τ

ATC
are far from

τ
ATE

depends on the variance of the weights used in each case ( ∕∑p pj j
and ( ) ( )− ∕∑ −p p1 1j j

, respectively).
Ignoring w for simplicity, letting ω denote a set of weights, and using the Cauchy–Schwarz inequality,

the difference between the weighted and unweighted means is bounded according to ( )
⎛
⎝∑ − ⎞

⎠ ≤ω τj j s j

1

2

( )∑ − ∑ω τj j s j j

1

2 2 . Since �[ ] =ω
s

1 , the term ( )∑ −ωj j s

1

2 corresponds to ( )s ωVar and so the bound scales with

the standard deviation of the weights.

Third, an analogous statement holds for sample statistics. Defining ≡
∑
∑τ̂

p w τ

p wATT

ˆj j j j

j j j

and
( )

( )
≡

∑ −
∑ −τ̂

p w τ

p wATC

1 ˆ

1 ˆ

j j j j

j j j

, we

have that if p
j
is monotonic in the observed within-stratum difference in means (τ̂j), then τ̂

FE
lies between τ̂

ATC

and τ̂
ATT

. The proof exactly parallels that of Proposition 1.
Finally, there are fruitful connections here with findings in the study by Słoczyński [9]. Słoczyński [9]

identified τ
FE

as a weighted average of two quantities. When potential outcomes (and so, effects) are linear in
propensities, these correspond to τ

ATC
and τ

ATT
. Interestingly, in case of linearity, weights can also be calculated

directly from the expressions in equations (5), (6), and (8), with a weight on τ
ATT

given by

( )

( )

( )

( )

( )

( )

=
−

−

∑ −
∑ −

∑ −
∑ −

∑

∑
∑ −
∑ −

λ .

p p w

p p w

p p w

p w

p w

p w

p p w

p w

1

1

1

1

1

1

j j j j

j j j j

j j j j

j j j

j j j

j j j

j j j j

j j j

2

2

(11)

See Supplementary materials (S3) for intermediate steps.

This weight admits a substantive interpretation. Quantity
( )

( )

∑ −
∑ −

p p w

p p w

1

1

j j j j

j j j j

2

is the variance-weighted average

propensity, and
( )

( )

∑ −
∑ −

p p w

p w

1

1

j j j j

j j j

and
∑

∑
p w

p w

j j j

j j j

2

give, respectively, the average propensity among units in control and

in treatment. The denominator is then the difference in average propensities between treatment and control
groups. The numerator is the difference between the variance-weighted average propensity and the average
propensity in control. We then have =λ 1 when the variance-weighted mean propensity is equal to the
average propensity in treatment, and 0 when it equals the average propensity in control.

Linearity is a stronger assumption than monotonicity however, and if only monotonicity can be defended,
then the weighted quantities in the study by Słoczyński [9] lose their connection to causal estimands. However,
Proposition 1 provided here can still be used.
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4 Conclusion

Researchers commonly use covariate adjustment to account for known variation in treatment assignment
propensities. This situation can arise in both observational and experimental studies.

A common analysis strategy in such cases is to regress outcomes on treatment using a set of controls
entered additively. A flexible version of this approach, which I focus on here, is one in which researchers use
fixed effects specifications to seek to capture variation in assignment propensities.

This approach is unfortunately not guaranteed to produce unbiased estimates of the average treatment
effect. Moreover, it is not well understood how estimates generated in this manner diverge from τ

ATE

and so how to interpret these results.
For this reason, this approach should, in general, be avoided. And fortunately, there are multiple ways to

generate estimates of average treatment effects in this setting. Most simply, equation (3) can be used to
estimate within-stratum effects; a weighted average of these will be unbiased for τ

ATE
. A blocked difference

in means estimator is available in the statistical package provided by Blair et al. [18]. Other strategies include
inverse propensity weights or regression interacting treatment with demeaned stratum dummy variables.
Further strategies are described in Gibbons et al. [10]. Supplementary materials (S3) provide code drawing on
Blair et al. [19] to illustrate the performance of some of these approaches for a variant of Example 1.

Despite the availability of these alternatives, using fixed effects to address assignment heterogeneity
remains common, as documented recently in Gibbons et al. [10]. If users are unable to access data and re-
estimate effects correctly, rules of thumb become useful to help interpret reported findings. A number are
provided here. First, for “rare” treatments, the least squares estimand lies close to the average treatment effect
for the treated; for “common” treatments, it is close to the treatment effect for the controls. Second, if
propensity variance is similar across strata, then the OLS estimand lies close to the ATE, even if actual
propensities diverge. Third, when a monotonicity condition is satisfied τ

FE
lies between the average treatment

effect for the treated and the average treatment effect for the controls. Thus, when higher values on third
variables are associated both with more positive (or more negative) treatment effects and with a higher (or
lower) propensity to being assigned to treatment, τ

FE
is bounded by causal quantities of interest. Under the

stronger assumption that effects are linear in propensities, a new intuitive weight is provided to indicate
relative proximity to τ

ATC
and τ

ATT
.
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