
JSS
Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

Making, Updating, and Querying Causal Models
using CausalQueries

Till Tietz
 

 

WZB
Lily Medina

 

 

University of California, Berkeley

Georgiy Syunyaev
 

 

Vanderbilt University
Macartan Humphreys

 

 

WZB

Abstract

The R package CausalQueries can be used to make, update, and query causal models.
Users provide a causal statement of the form X -> M <- Y; M <-> Y which is interpreted
as a structural causal model over a collection of binary variables. CausalQueries can then
(1) identify the set of principal strata—causal types—required to characterize all possible
types of causal relations between nodes consistent with the causal statement (2) determine
a set of parameters needed to characterize distributions over these types (3) update beliefs
over the distribution of causal types, using a stan model and (4) pose a wide range of
causal queries of the model, using either the prior distribution, the posterior distribution,
or a user-specified candidate vector of parameters.

Keywords: causal model, bayesian updating, DAG, Stan.

1. Introduction: Causal models

CausalQueries is an R package that lets users make, update, and query causal models. Users
provide a statement that reports a set of binary variables and the relations of causal ancestry
between them: which variables are direct causes of other variables, given the other variables
in the model. Once provided to make_model(), CausalQueries generates a parameter vector
that fully describes a probability distribution over all possible types of causal relations between
variables (“causal types”), given the causal structure. Given a prior over parameters and data
over some or all nodes, update_model() deploys a Stan (Carpenter, Gelman, Hoffman, Lee,
Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell 2017) model in order to generate a
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posterior distribution over causal models. The function query_model() can then be used
to ask a wide range of causal queries of the model, using either the prior distribution, the
posterior distribution, or a user-specified candidate vector of parameters.

In the next section we provide a short motivating example. We then describe how the package
relates to existing available software. Section 4 gives an overview of the statistical model
behind the package. Section 5, Section 6, and Section 7 then describe the main functionality
for the major operations using the package. We provide further computation details in the
final section.

2. Motivating example

Before providing details on package functionality we illustrate these three core functions by
showing how to use CuasalQueries to replicate the analysis in (Chickering and Pearl 1996;
see also Humphreys and Jacobs 2023). Chickering and Pearl (1996) seek to draw inference on
causal effects in the presence of imperfect compliance. We have access to an instrument 𝑍 (a
randomly assigned prescription for cholesterol medication), which is a cause of 𝑋 (treatment
uptake) but otherwise unrelated to 𝑌 (cholesterol). We imagine we are interested in three
specific queries. The first is the average causal effect of 𝑋 on 𝑌 . The second is the average
effect for units for which 𝑋 = 0 and 𝑌 = 0. The last is the average treatment effect for
“compliers”: units for which 𝑋 responds positively to 𝑍. Thus two of these queries are
conditional queries, with one conditional on a counterfactual quantity.

Our data on 𝑍, 𝑋, and 𝑌 is complete for all units and looks, in “compact form,” as follows:

R> data("lipids_data")
R>
R> lipids_data

event strategy count
1 Z0X0Y0 ZXY 158
2 Z1X0Y0 ZXY 52
3 Z0X1Y0 ZXY 0
4 Z1X1Y0 ZXY 23
5 Z0X0Y1 ZXY 14
6 Z1X0Y1 ZXY 12
7 Z0X1Y1 ZXY 0
8 Z1X1Y1 ZXY 78

Note that in compact form we simply record the number of units (“count”) that display each
possible pattern of outcomes on the three variables (“event”).1

With CausalQueries, you can create the model, input data to update it, and then query the
model for results thus:

R> make_model("Z -> X -> Y; X <-> Y") |>
+ update_model(lipids_data, refresh = 0) |>
+ query_model(query = "Y[X=1] - Y[X=0]",

1The “strategy” column records the set of variables for which data has been recorded.
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Table 1: Replication of Chickering and Pearl (1996).

query given mean sd cred.low.2.5% cred.high.97.5%
Y[X=1] - Y[X=0] - 0.56 0.10 0.38 0.73
Y[X=1] - Y[X=0] X==0 & Y==0 0.64 0.15 0.38 0.89
Y[X=1] - Y[X=0] X[Z=1] > X[Z=0] 0.70 0.05 0.60 0.80

+ given = c("All", "X==0 & Y==0", "X[Z=1] > X[Z=0]"),
+ using = "posteriors")

The output is a data frame with estimates, posterior standard deviations, and credibility
intervals. For example the data frame produced by the code above is shown in Table 1. In
the table rows 1 and 2 replicate results in Chickering and Pearl (1996), while row 3 returns
inferences for complier average effects.

As we describe below, the same basic procedure of making, updating, and querying models,
can be used (up to computational constraints) for arbitrary causal models, for different types
of data structures, and for all causal queries that can be posed of the causal model.

3. Connections to existing packages

The literature on causal inference and its software ecosystem are rich and expansive; spanning
the social and natural sciences as well as computer science and applied mathematics. In the
interest of clarity we thus briefly contextualize CausalQueries scope and functionality within
the subset of the causal inference domain addressing the evaluation of causal queries on causal
models encoded as directed acyclic graphs (DAGs) or structural equation models (SEMs).
Table 2 provides an overview of relevant software and discusses key connections, advantages
and disadvantages with respect to CausalQueries.

Table 2: Related software.

Software Source Language Availability Scope
causalnex Beaumont,

Horsburgh,
Pilgerstor-
fer, Droth,
Oentaryo,
Ler,
Nguyen,
Ferreira,
Patel, and
Leong
(2021)

Python • pip • causal structure learning
• querying marginal

distributions
• discrete data



4 Making, Updating, and Querying Causal Models using CausalQueries

Software Source Language Availability Scope
pclag Kalisch,

Mächler,
Colombo,
Maathuis,
and
Bühlmann
(2012)

R •
CRAN

•
GitHub

• causal structure learning
• ATEs under linear

conditional expectations
and no hidden selection

DoWhy Sharma and
Kiciman
(2020)

Python • pip • identification
• average and conditional

causal effects
• robustness checks

autobounds Duarte,
Finkelstein,
Knox,
Mummolo,
and
Shpitser
(2023)

Python •
Docker

•
GitHub

• bounding causal effects
• partial identification
• DAG canonicalization
• binary data

causaloptim Sachs,
Jonzon,
Sjölander,
and Gabriel
(2023)

R •
CRAN

•
GitHub

• bounding causal effects
• non-identified queries
• binary data

causalnex is a highly comprehensive software in the domain of causal modeling, offering a
suite rich in features and optimized for the learning, updating, and querying of causal mod-
els using discrete data. Its avoidance of the intricate model parametrization, characterized
by principal strata (nodal types) in CausalQueries, enables causalnex to adeptly process
non-binary data and scale to extensive causal models. However, this approach significantly
constrains the variety of feasible queries and the extent of prior knowledge that can be in-
corporated into models. In this capacity, causalnex mirrors machine learning strategies in
causal inference, prioritizing the learning of causal structures in environments abundant with
variables yet potentially deficient in domain-specific knowledge, and focusing on the assess-
ment of basic queries over marginal distributions in learned DAGs. Conversely, the complex
model structure utilized by CausalQueries is particularly advantageous for intricate causal
queries in settings where domain knowledge is more prevalent.

Like causalnex, pclag places particular emphasis on causal structure learning, utilizing
the resultant DAGs to recover average treatment effects (ATEs) across all learned markov-
equivalent classes implied by observed data that satisfy linearity of conditional expectations.
This approach again is more restrictive than CausalQueries in the DAGs and particularly
the queries it allows.

DoWhy is a feature rich, mature inference framework emphasizing causal identification, causal
effect estimation and assumption validation. Given a user specified DAG, it deploys do-
calculus to find expressions that identify desired causal-effects via Back-door, Front-door,
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IV and mediation identification criteria and leverages the identified expression and standard
estimators to estimate the desired estimand. Following estimation DoWhy deploys a compre-
hensive refutation engine implementing a large set of robustness tests. While this approach
allows it to efficiently handle varied data types on large causal models; the decision to not
parameterize the DAG itself places substantial limitations on the types of queries that can
be posed.

The software bearing the highest resemblance to CausalQueries with respect to model defini-
tion are autobounds and causaloptim. Dealing with binary causal models, their definitions
of principal strata (nodal types) and the resultant set of causal relations on the DAG (causal
types) are very close to those of CausalQueries. Differences in model definition arise with
respect to disturbance terms and confounding being defined implicitly via main nodes and
edges in CausalQueries vs explicitly via separate disturbance nodes in autobounds and
causaloptim. While CausalQueries assumes canonical form for input DAGs, autobounds
and causaloptim facilitate canonicalization. The essential difference between the methods;
however, lies in their approach to evaluating queries.

Both autobounds and causaloptim build on seminal approaches in Balke and Pearl (1997)
to construct bounds of queries, using constrained polynomial and linear optimization respec-
tively. In contrast, CausalQueries utilizes Bayesian inference to generate a posterior over
the causal model which is then queried (consistent with Chickering and Pearl 1996; Zhang,
Tian, and Bareinboim 2022). A key difference then is the target of inference. The polynomial
and linear programming approach to querying is in principle suited to handling larger causal
models, though given their similarity in model parametrization, autobounds, causaloptim
and CausalQueries face similar constraints induced by parameter spaces expanding rapidly
with model size. The Bayesian approach to model updating and querying holds the effi-
ciency advantage that a model can be updated once and queried infinitely, while expensive
optimization runs are required for each separate query in autobounds and causaloptim.

Summarizing, the particular strength of CausalQueries is to allow users to specify arbitrary
DAGs, arbitrary queries over nodes in those DAGs, and use the same canonical procedure to
form Bayesian posteriors over those queries whether or not the queries are identified. Thus
in principle if researchers are interested in learning about a quantity like the local average
treatment effect and their model in fact satisfies the conditions in Angrist, Imbens, and Rubin
(1996), then updating will recover valid estimates even if researchers are unaware that the local
average treatment effect is identified and are ignorant of the estimation procedure proposed
by Angrist et al. (1996).

There are two broad limitations on the sets of models handled natively by CausalQueries.
First CausalQueries is designed for models with a relatively small number of binary nodes.
Because there is no compromise made on the space of possible causal relations implied by a
given model, the parameter space grows very rapidly with the complexity of the causal model.
The complexity also depends on the causal structure and grows rapidly with the number of
parents affecting a given child. A chain model of the form 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐸 has just 40
parameters. A model in which 𝐴, 𝐵, 𝐶, 𝐷 are all direct ancestors of 𝐸 has 65, 544 parameters.
Moving from binary to non binary nodes has similar effects. The restriction to binary nodes is
for computational and not conceptual reasons. In fact it is possible to employ CausalQueries
to answer queries from models with non binary nodes but in general the computational costs
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make analysis of these models prohibitive.2

Second, the package is geared towards learning about populations from samples of units that
are independent of each other and are independently randomly sampled from populations.
Thus the basic set up does not address problems of sampling, clustering, hierarchical struc-
tures, or purposive sampling. The broader framework can however be used for these purposes
(see section 9.4 of Humphreys and Jacobs 2023). The targets of inference are usually case
level quantities or population quantities and CausalQueries is not well suited for estimating
sample quantities.

4. Statistical model

The core conceptual framework is described in Pearl’s Causality (Pearl 2009) but can be
summarized as follows (using the notation proposed in Humphreys and Jacobs 2023):

Definition 1 A “causal model” is:

1. an ordered collection of “endogenous nodes” 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛}
2. an ordered collection of “exogenous nodes” Θ = {𝜃𝑌1 , 𝜃𝑌1 , … , 𝜃𝑌𝑛}
3. a collection of functions 𝐹 = {𝑓𝑌1

, 𝑓𝑌2
, … , 𝑓𝑌𝑛

} specifying, for each 𝑗, how outcome 𝑦𝑗
depends on 𝜃𝑗 and realizations of endogenous nodes prior to 𝑗.

4. a probability distribution over Θ, 𝜆.

By default, CausalQueries takes endogenous nodes to be binary.3 When we specify a causal
structure we specify which endogenous nodes are (possibly) direct causes of a node, 𝑌𝑗, given
other nodes in the model. These nodes are called the parents of 𝑌𝑗, 𝑃𝐴𝑗 (we use upper case
𝑃𝐴𝑗 to indicate the collection of nodes and lower case 𝑝𝑎𝑗 to indicate a particular set of
values that these nodes might take on). With discrete valued nodes, it is possible to identify
all possible ways that a node might respond to its parents. We refer to the ways that a node
responds as “nodal type.” The set of nodal types corresponds to principal strata familiar, for
instance, in the study of instrumental variables (Frangakis and Rubin 2002).

If node 𝑌𝑖 can take on 𝑘𝑖 possible values then the set of possible values that can be taken on by
parents of 𝑗 is 𝑚𝑗 ∶= ∏𝑖∈𝑃𝐴𝑗

𝑘𝑖. Then there are 𝑘𝑚𝑗
𝑗 different ways that node 𝑗 might respond

to its parents. In the case of binary nodes this becomes 2(2|𝑃𝐴𝑗|). Thus for an endogenous
node with no parents there are 2 nodal types, for a binary node with one binary parent there
are four types, for a binary node with 2 parents there are 16, and so on.

The set of all possible causal reactions of a given unit to all possible values of parents is then
given by its collection of nodal types at each node. We call this collection a unit’s “causal

2For more on computation constraints and strategies to update and query large models see the associated
package CausalQueriesTools available via devtools::install_github("till-tietz/CausalQueriesTools").
The core approach used here is to divide large causal models into modules, update on modules and reassemble
to pose queries.

3CausalQueries can be used also to analyse non binary data though with a cost of greatly increased
complexity. See section 9.4.1 of Humphreys and Jacobs (2023) for an approach that codes non binary data as
a profile of outcomes on multiple binary nodes.



Journal of Statistical Software 7

type”, 𝜃.

The approach used by CausalQueries is to let the domain of 𝜃𝑌𝑗 be coextensive with the
number of nodal types for 𝑌𝑗. Function 𝑓𝑗 then determines the value of 𝑦 by simply reporting
the value of 𝑌𝑗 implied by the nodal type and the values of the parents of 𝑌𝑗. Thus if 𝜃𝑗

𝑝𝑎𝑗

is the value for 𝑗 when parents have values 𝑝𝑎𝑗, then we have simply that 𝑓𝑌𝑗
(𝜃𝑗, 𝑝𝑎𝑗) = 𝜃𝑗

𝑝𝑎𝑗 .
The practical implication is that, given the causal structure, learning about the model reduces
to learning about the distribution, 𝜆, over the nodal types.

In cases in which there is no unobserved confounding, we take the probability distributions
over the nodal types for different nodes to be independent: 𝜃𝑖 ⟂⟂ 𝜃𝑗, 𝑖 ≠ 𝑗. In this case
we use a categorical distribution to specify the 𝜆𝑗

𝑥 ∶= Pr(𝜃𝑗 = 𝜃𝑗
𝑥). From independence

then we have that the probability of a given causal type 𝜃𝑥 is simply ∏𝑛
𝑖=1 𝜆𝑖

𝑥. For instance
Pr(𝜃 = (𝜃𝑋

1 , 𝜃𝑌
01)) = Pr(𝜃𝑋 = 𝜃𝑋

1 ) Pr(𝜃𝑌 = 𝜃𝑌
01) = 𝜆𝑋

1 𝜆𝑌
01.

In cases in which there is confounding, the logic is essentially the same except that we need
to specify enough parameters to capture the joint distribution over nodal types for different
nodes.

We make use of the causal structure to simplify. As an example, for the Lipids model, the
full joint distribution of nodal types can be simplified as in Equation 1.

Pr(𝜃𝑍 = 𝜃𝑍
1 , 𝜃𝑋 = 𝜃𝑋

10, 𝜃𝑌 = 𝜃𝑌
11) = Pr(𝜃𝑍 = 𝜃𝑍

1 ) Pr(𝜃𝑋 = 𝜃𝑋
10) Pr(𝜃𝑌 = 𝜃𝑌

11|𝜃𝑋 = 𝜃𝑋
10) (1)

And so, for this model, 𝜆 would include parameters that represent Pr(𝜃𝑍) and Pr(𝜃𝑋) but
also the conditional probability Pr(𝜃𝑌 |𝜃𝑋):

Pr(𝜃𝑍 = 𝜃𝑍
1 , 𝜃𝑋 = 𝜃𝑋

10, 𝜃𝑌 = 𝜃𝑌
11) = 𝜆𝑍

1 𝜆𝑋
10𝜆𝑌 |𝜃𝑋

10
11 (2)

Representing beliefs over causal models thus requires specifying a probability distribution
over 𝜆. This might be a degenerate distribution if users want to specify a particular model.
CausalQueries allows users to specify parameters, 𝛼 of a Dirichlet distribution over 𝜆. If
all entries of 𝛼 are 0.5 this corresponds to Jeffreys priors. The default behavior is for
CausalQueries to assume a uniform distribution – that is, that all nodal types are equally
likely – which corresponds to 𝛼 being a vector of 1s.

Updating is then done with respect to beliefs over 𝜆. In the Bayesian approach we have
simply:

𝑝(𝜆|𝐷) = 𝑝(𝐷|𝜆)𝑝(𝜆)
∫𝜆′ 𝑝(𝐷|𝜆′)𝑝(𝜆′)

where 𝑝(𝐷|𝜆′) is calculated under the assumption that units are exchangeable and inde-
pendently drawn. In practice this means that the probability that two units have causal
types 𝜃𝑖 and 𝜃𝑗 is simply 𝜆′

𝑖𝜆′
𝑗. Since a causal type fully determines an outcome vector

𝑑 = {𝑦1, 𝑦2, … , 𝑦𝑛}, the probability of a given outcome (“event”), 𝑤𝑑, is given simply by
the probability that the causal type is among those that yield outcome 𝑑. Thus from 𝜆 we
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can calculate a vector of event probabilities, 𝑤(𝜆), for each vector of outcomes, and under
independence we have:

𝐷 ∼ Mulitinomial(𝑤(𝜆), 𝑁)

Thus for instance in the case of a 𝑋 → 𝑌 model, and letting 𝑤𝑥𝑦 denote the probability of a
data type 𝑋 = 𝑥, 𝑌 = 𝑦, the event probabilities are:

𝑤(𝜆) =
⎧{{
⎨{{⎩

𝑤00 = 𝜆𝑋
0 (𝜆𝑌

00 + 𝜆𝑌
01)

𝑤01 = 𝜆𝑋
0 (𝜆𝑌

11 + 𝜆𝑌
10)

𝑤10 = 𝜆𝑋
1 (𝜆𝑌

00 + 𝜆𝑌
10)

𝑤11 = 𝜆𝑋
1 (𝜆𝑌

11 + 𝜆𝑌
01)

For concreteness: Table 3 illustrates key values for the Lipids model. We see here that we have
two types for node 𝑍, four for 𝑋 (representing the strata familiar from instrumental variables
analysis: never takers, always takers, defiers, and compliers) and 4 for 𝑌 . For 𝑍 and 𝑋 we
have parameters corresponding to probability of these nodal types. For instance Z.0 is the
probability that 𝑍 = 1. Z.1 is the complementary probability that 𝑍 = 1. Things are little
more complicated for distributions on nodal types for 𝑌 however: because of confounding
between 𝑋 and 𝑌 we have parameters that capture the conditional probability of the nodal
types for 𝑌 given the nodal types for 𝑋. We see there are four sets of these parameters.

Table 3: Nodal types and parameters for Lipids model.

node nodal_type param_set param_names param_value priors
Z 0 Z Z.0 0.71 1
Z 1 Z Z.1 0.29 1
X 00 X X.00 0.36 1
X 10 X X.10 0.03 1
X 01 X X.01 0.51 1
X 11 X X.11 0.10 1
Y 00 Y.X.00 Y.00_X.00 0.43 1
Y 10 Y.X.00 Y.10_X.00 0.08 1
Y 01 Y.X.00 Y.01_X.00 0.34 1
Y 11 Y.X.00 Y.11_X.00 0.15 1
Y 00 Y.X.01 Y.00_X.01 0.43 1
Y 10 Y.X.01 Y.10_X.01 0.05 1
Y 01 Y.X.01 Y.01_X.01 0.39 1
Y 11 Y.X.01 Y.11_X.01 0.13 1
Y 00 Y.X.10 Y.00_X.10 0.24 1
Y 10 Y.X.10 Y.10_X.10 0.45 1
Y 01 Y.X.10 Y.01_X.10 0.12 1
Y 11 Y.X.10 Y.11_X.10 0.19 1
Y 00 Y.X.11 Y.00_X.11 0.61 1
Y 10 Y.X.11 Y.10_X.11 0.11 1
Y 01 Y.X.11 Y.01_X.11 0.03 1
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Y 11 Y.X.11 Y.11_X.11 0.25 1

The next to final column shows a sample set of parameter values. Together the parameters
describe a full joint probability distribution over types for 𝑍, 𝑋 and 𝑌 that is faithful to the
graph.

From these we can calculate the probability of each data type. For instance the probability
of data type 𝑍 = 0, 𝑋 = 0, 𝑌 = 0 is:

𝑤000 = Pr(𝑍 = 0, 𝑋 = 0, 𝑌 = 0) = 𝜆𝑍
0 (𝜆𝑋

00(𝜆𝑌 |𝜆𝑋
00

00 + 𝜆𝑌 |𝜆𝑋
00

01 ) + 𝜆𝑋
01(𝜆𝑌 |𝜆𝑋

01
00 + 𝜆𝑌 |𝜆𝑋

01
01 ))

In practice CausalQueries uses a matrix parmap that maps from parameters into data types.

The value of the CausalQueries package is to allow users to specify arbitrary models of this
form, figure out all the implied nodal types and causal types, and then update given priors
and data by calculating event probabilities implied by all possible parameter vectors and in
turn the likelihood of the data given the model. In addition, the package allows for arbitrary
querying of a model to assess the values of estimands of interest that a re function of the values
or counterfactual values of nodes conditional on values or counterfactual values of nodes.

In the next sections we review key functionality for making, updating and querying causal
models.

5. Making models

A model is defined in one step in CausalQueries using a dagitty syntax (Textor, van der Zan-
der, Gilthorpe, Liśkiewicz, and Ellison 2016) in which the structure of the model is provided
as a statement. For instance:

R> model <- make_model("X -> M -> Y <- X")

The statement in quotes, "X -> M -> Y <- X", provides the names of nodes. An arrow (“->”
or “<-”) connecting nodes indicates that one node is a potential cause of another, i.e. whether
a given node is a “parent” or “child” of another. Formally a statement like this is interpreted
as:

1. Functional equations:

• 𝑌 = 𝑓(𝑀, 𝑋, 𝜃𝑌 )
• 𝑀 = 𝑓(𝑋, 𝜃𝑀)
• 𝑋 = 𝜃𝑋

2. Distributions on Θ:

• Pr(𝜃𝑖 = 𝜃𝑖
𝑘) = 𝜆𝑖

𝑘

3. Independence assumptions:

• 𝜃𝑖 ⟂⟂ 𝜃𝑗, 𝑖 ≠ 𝑗
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Function 𝑓 maps from the set of possible values of the parents of 𝑖 to values of node 𝑖 given
𝜃𝑖 as described above.

In addition, as we did in the Chickering and Pearl (1996) example, it is possible to use two
headed arrows (<->) to indicate “unobserved confounding”, that is, the presence of an unob-
served variable that might influence two or more observed variables. In this case condition 3
above is relaxed and the exogenous nodes associated with confounded variables have a joint
distribution. We describe how this is done in greater detail in Section 5.3.2.

5.1. Graphing

Plotting the model can be useful to check that you have defined the structure of the model
correctly. CausalQueries provides simple graphing tools that draw on functionality from the
dagitty, ggplot2, and ggdag packages.

Once defined, a model can be graphed by calling the plot() method defined for the objects
with class causal_model produced by make_model() function.

R> make_model("X -> M -> Y <- X; Z -> Y") |>
+ plot()

Alternatively you can provide a number of options to the plot() call that will be passed to
CausalQueries:::plot_dag() via the method.

R> make_model("X -> M -> Y <- X; Z -> Y") |>
+ plot(x_coord = 1:4,
+ y_coord = c(1.5,2,1,2),
+ textcol = "white",
+ textsize = 3,
+ shape = 18,
+ nodecol = "grey",
+ nodesize = 12)

The graphs produced by the two calls above are shown in Figure 1. In both cases the result-
ing plot will have class c("gg", "ggplot") and so will accept any additional modifications
available via the ggplot2 package.

5.2. Model characterization

When a model is defined, a set of objects is generated. These are the key quantities that are
used for all inference. Table 4 summarizes the core components of a model, providing a brief
explanation for each one.

The first element is a statement which defines how the nodes in the model are related,
specified by the user using dagitty syntax. The second element, dag, is a data frame that
outlines the parent-child relationships within the model. The element nodes is simply a list
of the names of the nodes in the model. Lastly, parents_df, is a table listing the nodes,
indicating if they are “root” nodes (nodes with no parents among the set of specified nodes),
and showing how many parents each node has.
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Figure 1: Examples of model graphs.

The model includes additional elements, nodal_types, parameters_df, and causal_types,
which we explain in detail later.

Table 4: Core Elements of a Causal Model.

Element Description
statement A character string that describes directed causal relations

between variables in a causal model, where arrows denote that
one node is a potential cause of another.

dag A data frame with columns ‘parent’ and ‘children’ indicating
how nodes relate to each other.

nodes A list containing the nodes in the model.
parents_df A table listing nodes, whether they are root nodes or not, and

the number of parents they have.
nodal_types A list with the nodal types in the model. See Section 5.2.2 for

more details.
parameters_df A data frame linking the model’s parameters with the nodal

types of the model, as well as the family to which they belong.
See Section 5.2.1 for more details.

causal_types A data frame listing causal types and the nodal types that
produce them. (See Section 5.2.3.) |

After updating a model, two additional components are attached to it:

• A posterior distribution of the parameters in the model, generated by Stan. This distri-
bution reflects the updated parameter values.

• A list of other optional objects, stan_objects. The stan_objects can include the
stanfit object and distributions over nodal types and event probabilities (w).

Table 5 summarizes the objects attached to the model after updating.
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Table 5: Additional Elements.

Element Description
posterior_distribution The posterior distribution of the updated parameters

generated by Stan.
stan_objects A list of additional objects (see next rows).
data The data used for updating the model, always included in

stan_objects.
type_distribution The updated distribution of the nodal types, appended to

stan_objects by default.
w A mapping from parameters to event probabilities, optionally

appended to stan_objects.
stan_fit The stanfit object generated by Stan, optionally appended

to stan_objects.

Parameters data frame

When a model is created, CausalQueries attaches a “parameters data frame” which keeps
track of model parameters, which belong together in a family, and how they relate to causal
types. This becomes especially important for more complex models with confounding that
might involve more complicated mappings between parameters and nodal types. In the case
with no confounding the nodal types are the parameters; in cases with confounding there are
generally more parameters than nodal types. We already saw a segment of a parameters data
frame for a model with confounding in Table 3.

Table 6 shows the full parameters data frame for a simple model generated by the following
code.

R> make_model("X -> Y")$parameters_df

Table 6: Example of parameters data frame.

param_names node gen param_set nodal_type given param_value priors
X.0 X 1 X 0 0.50 1
X.1 X 1 X 1 0.50 1
Y.00 Y 2 Y 00 0.25 1
Y.10 Y 2 Y 10 0.25 1
Y.01 Y 2 Y 01 0.25 1
Y.11 Y 2 Y 11 0.25 1

As in Table 3, each row in Table 6 corresponds to a single parameter. The columns of the
parameters data frame are understood as follows:

• param_names gives the name of the parameter, in shorthand. For instance the parameter
𝜆𝑋

0 = Pr(𝜃𝑋 = 𝜃𝑋
0 ) has par_name X.0.
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• param_value gives the (possibly default) parameter values (probabilities).
• param_set indicates which parameters group together to form a simplex. The parame-

ters in a set have parameter values that sum to 1. In this example 𝜆𝑋
0 + 𝜆𝑋

1 = 1.
• node indicates the node associated with the parameter.
• nodal_type indicates the nodal types associated with the parameter.
• gen indicates the place in the partial causal ordering (generation) of the node associated

with the parameter
• priors gives (possibly default) Dirichlet priors arguments for parameters in a set. Val-

ues of 1 (.5) for all parameters in a set implies uniform (Jeffreys) priors over this set.

Nodal types

As described above, two units have the same nodal type at node 𝑌 , 𝜃𝑌 , if their outcome at 𝑌
responds in the same ways to parents of 𝑌 .

A binary node with 𝑘 binary parents has 22𝑘 nodal types. The reason is that with 𝑘 parents,
there are 2𝑘 possible values of the parents and so 22𝑘 ways to respond to these possible
parental values. As a convention we say that a node with no parents has two nodal types (0
or 1).

When a model is created the full set of nodal types is identified. These are stored in the
model. The labels for these nodal types indicate how the unit responds to values of parents.
For instance, consider the model with two parents 𝑋 → 𝑌 ← 𝑀. In such a case, the nodal
types of 𝑌 will have subscripts with four digits, with each digit representing one of the
possible combinations of values that 𝑌 can take, given the values of its parents 𝑋 and 𝑀.
These combinations include the value of 𝑌 when:

• 𝑋 = 0 and 𝑀 = 0,
• 𝑋 = 0 and 𝑀 = 1,
• 𝑋 = 1 and 𝑀 = 0,
• 𝑋 = 1 and 𝑀 = 1.

As the number of parents increases, keeping track of what each digit represents becomes more
difficult. For instance, if 𝑌 had three parents, its nodal types would have subscripts of eight
digits, each associated with the value that 𝑌 would take for each combination of the three
parents. The interpret_type() function provides a clear map to identify what each digit in
the subscript represents. See the example below for a model with three parents.

The interpret_type() function can be called by the user to obtain interpretations for the
nodal types of each node in the model.

R> interpretations <-
+ make_model("X -> Y <- M; W -> Y") |>
+ interpret_type()
R>
R> interpretations$Y

node position display interpretation
1 Y 1 Y[*]******* Y | M = 0 & W = 0 & X = 0
2 Y 2 Y*[*]****** Y | M = 1 & W = 0 & X = 0
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3 Y 3 Y**[*]***** Y | M = 0 & W = 1 & X = 0
4 Y 4 Y***[*]**** Y | M = 1 & W = 1 & X = 0
5 Y 5 Y****[*]*** Y | M = 0 & W = 0 & X = 1
6 Y 6 Y*****[*]** Y | M = 1 & W = 0 & X = 1
7 Y 7 Y******[*]* Y | M = 0 & W = 1 & X = 1
8 Y 8 Y*******[*] Y | M = 1 & W = 1 & X = 1

Interpretations are automatically provided as part of the model object. A user can see them
like this.

R> make_model("X -> Y")$nodal_types

Causal types

Causal types are collections of nodal types. Two units are of the same causal type if they have
the same nodal type at every node. For example in a 𝑋 → 𝑀 → 𝑌 model, 𝜃 = (𝜃𝑋

0 , 𝜃𝑀
01, 𝜃𝑌

10)
is a type that has 𝑋 = 0, 𝑀 responds positively to 𝑋, and 𝑌 responds positively to 𝑀 .

When a model is created, the full set of causal types is identified. These are stored in the
model object:

R> lipids_model$causal_types |> head()

Z X Y
Z0.X00.Y00 0 00 00
Z1.X00.Y00 1 00 00
Z0.X10.Y00 0 10 00
Z1.X10.Y00 1 10 00
Z0.X01.Y00 0 01 00
Z1.X01.Y00 1 01 00

In the Lipids model there are 2 × 4 × 4 = 32 causal types. A model with 𝑛𝑗 nodal types at
node 𝑗 has ∏𝑗 𝑛𝑗 causal types. Thus the set of causal types can be large.

Knowledge of a causal type tells us what values a unit would take, on all nodes, whether or not
there are interventions. For example for a model 𝑋 → 𝑀 → 𝑌 a type 𝜃 = (𝜃𝑋

0 , 𝜃𝑀
01, 𝜃𝑌

10) would
imply data (𝑋 = 0, 𝑀 = 0, 𝑌 = 1) absent any intervention. (The converse of this, of course,
is the key to updating: observation of data (𝑋 = 0, 𝑀 = 0, 𝑌 = 1) result in more weight
placed on 𝜃𝑋

0 , 𝜃𝑀
01, and 𝜃𝑌

10).) The general approach used by CausalQueries for calculating
outcomes from causal types is given in Section 7.1.

Parameter matrix

The parameters data frame keeps track of parameter values and priors for parameters, but
it does not provide a mapping between parameters and the probability of causal types. The
parameter matrix—the “𝑃 matrix”—can be added to the model to provide this mapping.
The 𝑃 matrix has a row for each parameter and a column for each causal type. For instance:

R> make_model("X -> Y") |> get_parameter_matrix()
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Rows are parameters, grouped in parameter sets

Columns are causal types

Cell entries indicate whether a parameter probability is used
in the calculation of causal type probability

X0.Y00 X1.Y00 X0.Y10 X1.Y10 X0.Y01 X1.Y01 X0.Y11 X1.Y11
X.0 1 0 1 0 1 0 1 0
X.1 0 1 0 1 0 1 0 1
Y.00 1 1 0 0 0 0 0 0
Y.10 0 0 1 1 0 0 0 0
Y.01 0 0 0 0 1 1 0 0
Y.11 0 0 0 0 0 0 1 1

param_set (P)

The probability of a causal type is given by the product of the parameter values for parameters
whose row in the 𝑃 matrix contains a 1. Later (e.g. Table 8) we will see examples where the
𝑃 matrix helps keep track of parameters that are created when confounding is added to a
model.

The parameter matrix is generated on the fly as needed, but it can also be added to the model
using set_parameter_matrix(), which can sometimes be useful to speed up operations:

R> make_model("X -> Y") |> set_parameter_matrix()

5.3. Tailoring models

When a dagitty statement is provided to make_data() a model is formed with a set of default
assumptions: in particular there are no restrictions placed on nodal types and flat priors are
assumed over all parameters. These are features that can be adjusted after a model is formed.

Setting restrictions

Sometimes for theoretical or practical reasons it is useful to constrain the set of types. In
CausalQueries this is done at the level of nodal types, with restrictions on causal types
following from restrictions on nodal types.

To illustrate, in analyses of data with imperfect compliance, like we saw in our motivating
Lipids model example, it is common to impose a monotonicity assumption: that 𝑋 does
not respond negatively to 𝑍. This is one of the conditions needed to interpret instrumental
variables estimates as (consistent) estimates of the complier average treatment effect. In
CausalQueries we can impose this assumption as follows:

R> model_restricted <-
+ make_model("Z -> X -> Y; X <-> Y") |>
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+ set_restrictions("X[Z=1] < X[Z=0]")

In words: we restrict by removing types for which 𝑋 is decreasing in 𝑍. If we wanted to retain
only this nodal type, rather than remove it, we could do so by stipulating keep = FALSE. Users
can use get_parameter_matrix(model_restricted) to view the resulting parameter matrix
in which both the set of parameters and the set of causal types are restricted.

CausalQueries allows restrictions to be set in many other ways:

• Using nodal type labels

R> make_model("S -> C -> Y <- R <- X; X -> C -> R") |>
+ set_restrictions(labels = list(C = "1000", R = "0001", Y = "0001"),
+ keep = TRUE)

• Using wildcards in nodal type labels

R> make_model("X -> Y") |> set_restrictions(labels = list(Y = "?0"))

• In models with confounding restrictions can be added to nodal types conditional on the
values of other nodal types; this is done using a given argument.

R> model <-
+ make_model("X -> Y -> Z; X <-> Z") |>
+ set_restrictions(labels = list(X = '0', Y = c('00', '11'), Z = '00'),
+ given = c(NA, NA, 'X.1'))

Setting restrictions sometimes involves using causal syntax (see Section 7.2 for a guide the
syntax used by CausalQueries). Help file in ?set_restrictions provides further details
and examples on restrictions users can set.

Allowing confounding

Unobserved confounding between two (or more) nodes arises when the nodal types for the
nodes are not independent. In the 𝑋 → 𝑌 graph, for instance, there are 2 nodal types for 𝑋
and 4 for 𝑌 . There are thus 8 joint nodal types (or causal types), as shown in Table 7.

Table 7: Nodal types in 𝑋 → 𝑌 model.

𝜃𝑋
0 𝜃𝑋

1 ∑
𝜃𝑌

00 Pr(𝜃𝑋
0 , 𝜃𝑌

00) Pr(𝜃𝑋
1 , 𝜃𝑌

00) Pr(𝜃𝑌
00)

𝜃𝑌
10 Pr(𝜃𝑋

0 , 𝜃𝑌
10) Pr(𝜃𝑋

1 , 𝜃𝑌
10) Pr(𝜃𝑌

10)
𝜃𝑌

01 Pr(𝜃𝑋
0 , 𝜃𝑌

01) Pr(𝜃𝑋
1 , 𝜃𝑌

01) Pr(𝜃𝑌
01)

𝜃𝑌
11 Pr(𝜃𝑋

0 , 𝜃𝑌
11) Pr(𝜃𝑋

1 , 𝜃𝑌
11) Pr(𝜃𝑌

11)
∑ Pr(𝜃𝑋

0 ) Pr(𝜃𝑋
1 ) 1

Table 7 has eight interior elements and so an unconstrained joint distribution would have
7 degrees of freedom. A no-confounding assumption means that Pr(𝜃𝑋|𝜃𝑌 ) = Pr(𝜃𝑋), or
Pr(𝜃𝑋, 𝜃𝑌 ) = Pr(𝜃𝑋) Pr(𝜃𝑌 ). In this case we just put a distribution on the marginals and
there would be 3 degrees of freedom for 𝑌 and 1 for 𝑋, totaling 4 rather than 7.
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Table 8: Parameter matrix for model with confounding.

X0.Y00 X1.Y00 X0.Y10 X1.Y10 X0.Y01 X1.Y01 X0.Y11 X1.Y11
X.0 1 0 1 0 1 0 1 0
X.1 0 1 0 1 0 1 0 1
Y.00_X.0 1 0 0 0 0 0 0 0
Y.10_X.0 0 0 1 0 0 0 0 0
Y.01_X.0 0 0 0 0 1 0 0 0
Y.11_X.0 0 0 0 0 0 0 1 0
Y.00_X.1 0 1 0 0 0 0 0 0
Y.10_X.1 0 0 0 1 0 0 0 0
Y.01_X.1 0 0 0 0 0 1 0 0
Y.11_X.1 0 0 0 0 0 0 0 1

The parameters data frame for this model would have two parameter families for parameters
associated with the node 𝑌 . Each family captures the conditional distribution of 𝑌 ’s nodal
types, given 𝑋. For instance the parameter Y01_X.1 can be interpreted as Pr(𝜃𝑌 = 𝜃𝑌

01|𝜃𝑋 =
1). See again Table 3 for an example of a parameters matrix with confounding.

To see exactly how the parameters map to causal types we can look at the parameter matrix
for the model by calling get_parameter_matrix(confounded).

R> make_model("X -> Y ; X <-> Y") |>
+ get_parameter_matrix()

The resulting parameter matrix is shown in Table 8. Importantly, the 𝑃 matrix works as
before, despite confounding. We can assess the probability of causal types by multiplying the
probabilities of the constituent parameters.

Table 9 illustrates more generally how the number of independent parameters depends on the
nature of possible confounding.

Table 9: Number of different independent parameters (degrees of freedom) for different 3 node
models.

Model dof
X -> Y <- W 17
X -> Y <- W; X <-> W 18
X -> Y <- W; X <-> Y; W <-> Y 62
X -> Y <- W; X <-> Y; W <-> Y; X <->W 63
X -> W -> Y <- X 19
X -> W -> Y <- X; W <-> Y 64
X -> W -> Y <- X; X <-> W; W <-> Y 67
X -> W -> Y <- X; X <-> W; W <-> Y; X <-> Y 127
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Setting Priors

Priors on model parameters can be added to the parameters data frame and are interpreted
as “alpha” arguments for a Dirichlet distribution. The Dirichlet distribution is a probability
distribution over an 𝑛 − 1 dimensional unit simplex. It can be thought of as a generalization
of the Beta distribution and is parametrized by an 𝑛-dimensional positive vector 𝛼. Thus for
example a Dirichlet with 𝛼 = (1, 1, 1, 1, 1) gives a probability distribution over all non negative
5-dimensional vectors that sum to 1, e.g. (0.1, 0.1, 0.1, 0.1, 0.6) or (0.1, 0.2, 0.3, 0.3, 0.1). This
particular value for 𝛼 implies that all such vectors are equally likely. Other values for 𝛼 can
be used to control the expectation for each dimension as well as certainty. Thus for instance
the vector 𝛼 = (100, 1, 1, 1, 100) would result in more weight on distributions that are close
to (0.5, 0, 0, 0, 0.5).

In CausalQueries, priors are generally specified over the distribution of nodal types (or over
the conditional distribution of nodal types, when there is confounding). Thus for instance
in an 𝑋 → 𝑌 model we have one Dirichlet distribution over the two types for 𝜃𝑋 and one
Dirichlet distribution over the four types for 𝜃𝑌 .

Implicitly priors are independent across families. Thus for instance in an 𝑋 → 𝑌 model we
specify beliefs over 𝜆𝑋 and over the over 𝜆𝑌 separately. CausalQueries does not let users
specify correlated beliefs over these parameters.4

By default, priors are set to unity, corresponding to uniform priors. To retrieve the model’s
priors we can run the following code:

R> make_model("X -> Y") |> get_priors()

X.0 X.1 Y.00 Y.10 Y.01 Y.11
1 1 1 1 1 1

Alternatively you could set Jeffreys priors using set_priors() as follows:

R> make_model("X -> Y") |> set_priors(distribution = "jeffreys")

You can also add custom priors. Custom priors are most simply specified by being added as
a vector of numbers using set_priors(). For instance:

R> make_model("X -> Y") |>
+ set_priors(1:6) |>
+ get_priors()

X.0 X.1 Y.00 Y.10 Y.01 Y.11
1 2 3 4 5 6

The priors here should be interpreted as indicating:

• 𝛼𝑋 = (1, 2), which implies a distribution over (𝜆𝑋
0 , 𝜆𝑋

1 ) centered on (1/3, 2/3).
• 𝛼𝑌 = (3, 4, 5, 6), which implies a distribution over (𝜆𝑌

00, 𝜆𝑌
10, 𝜆𝑌

01𝜆𝑌
11) centered on

(3/18, 4/18, 5/18, 6/18).
4Of course, if a model involves possible confounding, users can specify beliefs about 𝜆𝑌 given 𝜃𝑋. But this

is a statement about beliefs over a joint distribution not jointly distributed beliefs.
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For larger models it can be hard to provide priors as a vector of numbers. For that reason
set_priors() allows for more targeted modifications of the parameter vector. For instance:

R> make_model("X -> Y") |>
+ set_priors(statement = "Y[X=1] > Y[X=0]", alphas = 3) |>
+ get_priors()

X.0 X.1 Y.00 Y.10 Y.01 Y.11
1 1 1 1 3 1

As setting priors simply requires mapping alpha values to parameters, the process reduces to
selecting rows of the parmeters_df data frame, at which to alter values. When specifying a
causal statement as above, CausalQueries internally identifies nodal types that are consistent
with the statement, which in turn identify parameters to alter priors for.

We can achieve the same result as above by specifying nodal types for which we would like
to adjust the priors:

R> make_model("X -> Y") |>
+ set_priors(nodal_type = "01", alphas = 3) |>
+ get_priors()

Or even parameter names:

R> make_model("X -> Y") |>
+ set_priors(param_names = "Y.01", alphas = 3) |>
+ get_priors()

set_priors() allows for the specification of any non-redundant combination of arguments
on the param_names, node, nodal_type, param_set and given columns of parameters_df
to uniquely identify parameters to set priors for. Alternatively a fully formed subsetting
statement may be supplied to alter_at. Since all these arguments get mapped to the pa-
rameters they identify internally they may be used interchangeably.5 Thus the following two
specifications of priors are equivalent:

R> model <- make_model("X -> M -> Y; X <-> Y")
R>
R> model |>
+ set_priors(node = "Y",
+ nodal_type = c("01","11"),
+ given = "X.1",
+ alphas = c(3,2))
R>
R> model |>
+ set_priors(
+ alter_at =
+ "node == 'Y' & nodal_type %in% c('01','11') & given == 'X.1'",
+ alphas = c(3,2))

5See ?set_priors and ?make_priors for many more examples.
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While highly targeted prior setting is convenient and flexible, they should be used with cau-
tion. Setting priors on specific parameters in complex models, especially models involving
confounding, may strongly affect inferences.

Furthermore, note that flat priors over nodal types do not necessarily translate into flat priors
over queries. “Flat” priors over parameters in a parameter family put equal weight on each
nodal type, but this in turn can translate into strong assumptions on causal quantities of
interest. For instance in an 𝑋 → 𝑌 model in which negative effects are ruled out, the average
causal effect implied by “flat” priors is 1/3. This can be seen by querying the model as follows:

R> make_model("X -> Y") |>
+ set_restrictions(decreasing("X", "Y")) |>
+ query_model("Y[X=1] - Y[X=0]", using = "priors")

More subtly the structure of a model, coupled with flat priors, has substantive importance for
priors on causal quantities. For instance with flat priors, priors on the probability that 𝑋 has
a positive effect on 𝑌 in the model 𝑋 → 𝑌 is centered on 1/4. But priors on the probability
that 𝑋 has a positive effect on 𝑌 in the model 𝑋 → 𝑀 → 𝑌 is centered on 1/8.

Again, you can use query_model() to figure out what flat (or other) priors over parameters
imply for priors over causal quantities:

Caution regarding priors is particularly important when models are not identified, as is the
case for many of the models considered here. In such cases, for some quantities, the marginal
posterior distribution simply reflects the marginal prior distribution (Poirier 1998).

The crucial aspect we emphasize is the necessity of avoiding the misconception that “uninfor-
mative” priors are devoid of implications concerning the values of causal quantities of interest.
In reality, these priors do carry certain presumptions. The impact of flat priors on causal
quantities is contingent on the structural configuration of the model. Moreover for some
inferences from causal models the priors can matter a lot even if you have a lot of data. In
such cases it can be helpful to know what priors on parameters imply for priors on causal
quantities of interest (by using query_model()) and to assess how much conclusions depend
on priors (by comparing results across models that vary in their priors).

The following code gives an example where a change in model structure together with uniform
priors implies different beliefs over causal quantities.

R> make_model("X -> Y") |>
+ query_model("Y[X=1] > Y[X=0]", using = "priors")
R>
R> make_model("X -> M -> Y") |>
+ query_model("Y[X=1] > Y[X=0]", using = "priors")

Setting Parameters

By default, models have a vector of parameter values included in the parameters_df data
frame. These are useful for generating data, or for situations, such as process tracing, when
one wants to make inferences about causal types (𝜃), given case level data, under the assump-
tion that the model is known.
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The logic for setting parameters is similar to that for setting priors: effectively we need to
place values on the probability of nodal types. The key difference is that whereas the 𝛼
value placed on a nodal types can be any positive number—capturing our certainty over
the parameter value—the parameter values must lie in the unit interval, [0, 1]. In general if
parameter values are passed that do not lie in the unit interval, these are normalized so that
they do.

Consider the causal model below. It has two parameter sets, one for 𝑋 and one for 𝑌 , with
six nodal types, two corresponding to 𝑋 and four corresponding to 𝑌 . The key feature of the
parameters is that they must sum to 1 within each parameter set.

R> make_model("X -> Y") |>
+ get_parameters()

X.0 X.1 Y.00 Y.10 Y.01 Y.11
0.50 0.50 0.25 0.25 0.25 0.25

The example below illustrates a change in the value of the parameter 𝑌 in the case it is
increasing in 𝑋. Here nodal type Y.Y01 is set to be 0.5, while the other nodal types of this
parameter set were re-normalized so that the parameters in the set still sum to one.

R> make_model("X -> Y") |>
+ set_parameters(statement = "Y[X=1] > Y[X=0]", parameters = .5) |>
+ get_parameters()

X.0 X.1 Y.00 Y.10 Y.01 Y.11
0.5000000 0.5000000 0.1666667 0.1666667 0.5000000 0.1666667

5.4. Drawing and manipulating data

Once a model has been defined it is possible to simulate data from the model using the
make_data() function. This can be useful for instance for assessing the expected performance
of a model given data drawn from some speculated set of parameter values.

R> model <- make_model("X -> M -> Y")

Drawing data basics

By default, the parameters used are taken from model$parameters_df.

R> sample_data_1 <-
+ model |>
+ make_data(n = 4)

However you can also specify parameters directly or use parameter draws from a prior or
posterior distribution. For instance:

R> make_data(model, n = 3, param_type = "prior_draw")

X M Y
1 0 0 1
2 0 0 1
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3 1 0 0

Note that the data is returned ordered by data type as in the example above.

Drawing incomplete data

CausalQueries can be used in settings in which researchers have gathered different amounts
of data for different nodes. For instance gathering 𝑋 and 𝑌 data for all units but 𝑀 data
only for some.

The function make_data allows you to draw data like this if you specify a data strategy
indicating the probabilities of observing data on different nodes, possibly as a function of
prior nodes observed.

R> sample_data_2 <-
+ make_data(model,
+ n = 8,
+ nodes = list(c("X", "Y"), "M"),
+ probs = list(1, .5),
+ subsets = list(TRUE, "X==1 & Y==0"),
+ verbose = FALSE)
R>
R> sample_data_2

X M Y
1 0 NA 0
2 0 NA 1
3 0 NA 1
4 0 NA 1
5 0 NA 0
6 0 NA 1
7 1 NA 1
8 1 NA 1

Reshaping data

Whereas data naturally comes in long form, with a row per observation, as in the examples
above, the data passed to Stan is in a compact form, which records only the number of units
of each data type, grouped by data “strategy”—an indicator of the nodes for which data was
gathered. CausalQueries includes functions that lets you move between these two forms in
case of need.

R> sample_data_2 |> collapse_data(model)

event strategy count
1 X0Y0 XY 2
2 X1Y0 XY 0
3 X0Y1 XY 4
4 X1Y1 XY 2
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In the same way it is possible to move from “compact data” to “long data” using
expand_data(). Note that NA’s are interpreted as data not having been sought. So in the
case of sample_data_2 the interpretation is that there are two data strategies: data on 𝑌 ,
𝑀 and 𝑋 was sought in two cases only; data on 𝑌 and 𝑋 only was sought in six cases.

6. Updating models

The approach used by the CausalQueries package to updating parameter values given ob-
served data uses Stan (Carpenter et al. 2017).

Below we explain the data required by the generic Stan program implemented in the package,
the structure of that program, and then show how to use the package to produce posterior
draws of parameters.

6.1. Data for Stan

We use a generic Stan program that works for all binary causal models. The main advantage
of the generic program we implement is that it allows us to pass the details of causal model
as data inputs to Stan instead of generating individual Stan program for each causal model.
The Stan model code can be found in Appendix B.

The data required by the Stan program includes vectors of observed data (Y) and priors on
parameters (lambdas_prior) as well as a set of matrices required for the mapping between
events, data types, causal types and parameters. The latter includes:

• A 𝑃 matrix (P) that tells Stan how many parameters there are, and how they map into
causal types,

• A matrix that maps parameters to data types (parmap), and
• An event matrix (E) that relates data types into patterns of observed data (events) in

cases where there are incomplete observations.

In addition data includes counts of all relevant quantities as well as start and end positions
of parameters pertaining to specific nodes and of distinct data strategies.

The internal function prep_stan_data() takes model and data as arguments and produces a
list with all objects described above that are required by the generic Stan program. Generally,
package users do not need to call the prep_stan_data() function directly to update the model.
If further inspection of the data required by the Stan program is required, you can do so using
the code below

R> sample_data_2 |>
+ collapse_data(model = model) |>
+ CausalQueries:::prep_stan_data(model = model)

6.2. How the Stan program works

The Stan model involves the following elements: (1) a specification of priors over sets of
parameters, (2) a mapping from parameters to event probabilities, 𝑤, and (3) a likelihood
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Table 10: Mapping from parameters to data types.

X0Y0 X1Y0 X0Y1 X1Y1
X.0 1 0 1 0
X.1 0 1 0 1
Y.00 1 1 0 0
Y.10 0 1 1 0
Y.01 1 0 0 1
Y.11 0 0 1 1

function. Below we describe each of those elements in more details.

Probability distributions over parameter sets

We are interested in “sets” of parameters. In the case without confounding these sets corre-
spond to the nodal types for each node: we have a probability distribution over the set of
nodal types. In cases with confounding these are sets of nodal types for a given node given
values of other nodes: we have to characterize the probability of each nodal type in a set
given the values of nodal types for other nodes.

To illustrate, in the 𝑋 → 𝑌 model we have two parameter sets (param_sets). The first is
𝜆𝑋 ∈ {𝜆𝑋

0 , 𝜆𝑋
1 } whose elements give the probability that 𝑋 is 0 or 1. These two probabilities

sum to one. The second parameter set is 𝜆𝑌 ∈ {𝜆𝑌
00, 𝜆𝑌

10, 𝜆𝑌
01𝜆𝑌

11}. These are also probabilities
and their values sum to one. Note that we have 6 parameters but just 1 + 3 = 4 degrees of
freedom.

We express priors over these parameter sets using multiple Dirichlet distributions. Thus for
instance we have (𝜆𝑋

0 , 𝜆𝑋
1 ) ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝑋

0 , 𝛼𝑋
1 ). Overall in 𝑋 → 𝑌 we have a 2-dimensional

Dirichlet distribution over the 𝑋 nodal types (equivalently, a Beta distribution) and a 4-
dimensional Dirichlet over the 𝑌 nodal types.

Event probabilities

For any candidate parameter vector 𝜆 we calculate the probability of “data types”. This is
done using a matrix that maps from parameters into data types, parmap. In cases without
confounding there is a column for each data type; the matrix indicates which nodes in each
set “contribute” to the data type, and the probability of the data type is found by summing
within sets and taking the product over sets.

The following code yields Table 10, which can be used to calculate event probabilities.

R> make_model("X -> Y") |>
+ get_parmap()

For instance the probability of data type X0Y0, 𝑤00 is 𝜆𝑋
0 × 𝜆𝑌

00 + 𝜆𝑋
0 × 𝜆𝑌

01. This is found
by combining a parameter vector with the first column of parmap, taking the product of the
probability of X.0 and the sum of the probabilities for Y.00 and Y.01.
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In cases with confounding the approach is similar except that the parmap matrix can contain
multiple columns for each data type to capture non-independence between nodes.

In the case of incomplete data we first identify the set of “data strategies”, where a collection
of a data strategy might be of the form “gather data on 𝑋 and 𝑀 , but not 𝑌 , for 𝑛1 cases
and gather data on 𝑋 and 𝑌 , but not 𝑀 , for 𝑛2 cases. The probability of an observed event,
within a data strategy, is given by summing the probabilities of the types that could give
rise to the incomplete data. For example 𝑋 is observed, but 𝑌 is not, then the probability
of 𝑋 = 0, 𝑌 = NA is 𝑤00 + 𝑤01. The matrix 𝐸 is passed to Stan to figure out which event
probabilities need to be combined for events with missing data.

Data probability

Once we have the event probabilities in hand for each data strategy we are ready to calculate
the probability of the data. For a given data strategy this is given by a multinomial distri-
bution with these event probabilities. When there is incomplete data, and so multiple data
strategies, this is given by the the product of the multinomial probabilities for each strategy.

6.3. Implementation

To update a CausalQueries model with data use:

R> update_model(model, data)

The data argument is a data frame containing some or all of the nodes in the model.
update_model() relies on rstan::sampling() to draw from posterior distribution and one
can pass any additional arguments accepted by rstan::sampling() in ... . Given that for
complex models the model updating can sometimes be slow in Appendix A we show how users
can utilize parallelization to improve computation speed. Appendix C provides an overview
of model updating benchmarks, evaluating the effects of model complexity and data size on
updating times.

6.4. Incomplete and censored data

CausalQueries assumes that missing data is missing at random, conditional on observed data.
Thus for instance in a 𝑋 → 𝑀 → 𝑌 model one might choose to observe 𝑀 in a random set
of cases in which 𝑋 = 1 and 𝑌 = 1. In that case if there are positive relations at each stage
you may be more likely to observe 𝑀 in cases in which 𝑀 = 1. However observation of 𝑀 is
still random conditional on the observed 𝑋 and 𝑌 data. The Stan model in CausalQueries
takes account of this kind of sampling naturally by assessing the probability of observing a
particular pattern of data within each data strategy. For a discussion see Section 9.2.3.2 of
Humphreys and Jacobs (2023).

In addition, it is possible to indicate when data has been censored and for the Stan model
to take this into account also. Say for instance that we only get to observe 𝑋 in cases
where 𝑋 = 1 and not when 𝑋 = 0. This kind of sampling is non random conditional
on observables. It is taken account however by indicating to Stan that the probability of
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Table 11: Posterior inferences taking account of censoring and not.

model query mean sd
uncensored (Y[X=1] - Y[X=0]) 0.59 0.20
censored (Y[X=1] - Y[X=0]) 0.01 0.32

observing a particular data type is 0, regardless of parameter values. This is done using the
censored_types argument in update_model().

To illustrate, in the example below we observe perfectly correlated data for 𝑋 and 𝑌 . If we
are aware that data in which 𝑋 ≠ 𝑌 has been censored then when we update we do not move
towards a belief that 𝑋 causes 𝑌 .

R> data <- data.frame(X = rep(0:1, 5), Y = rep(0:1, 5))
R>
R> list(
+ uncensored =
+ make_model("X -> Y") |>
+ update_model(data),
+ censored =
+ make_model("X -> Y") |>
+ update_model(data, censored_types = c("X1Y0", "X0Y1"))) |>
+ query_model(te("X", "Y"), using = "posteriors")

6.5. Output

The primary output from update_model() is a model with an attached posterior distribu-
tion over model parameters, stored as a data frame in model$posterior_distribution. In
addition, a distribution of causal types is stored by default and the stanfit object and a
distribution over event probabilities are optionally saved. See again Table 5 for a description
of the elements that the updated model contains.

7. Queries

CausalQueries provides functionality to pose and answer elaborate causal queries. The key
approach is to code causal queries as functions of causal types and return a distribution over
the queries that is implied by the distribution over causal types.

7.1. Calculating factual and counterfactual quantities

A key step in the calculation of most queries is the assessment of what outcomes will arise
for causal types given different interventions on nodes. In practice, we map from causal
types to data types by propagating realized values on nodes forward in the DAG, moving
from exogenous or intervened upon nodes to their descendants in generational order. The
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realise_outcomes() function achieves this by traversing the DAG, while recording for each
node’s nodal types, the values implied by realizations on the node’s parents.

To illustrate, consider the first causal type of a 𝑋 → 𝑌 model:

1. 𝜃𝑋
0 implies that, absent intervention on 𝑋, 𝑋 has a realized value of 0; 𝜃𝑌

00 implies that,
absent intervention on 𝑌 , 𝑌 has a realized value of 0 regardless of 𝑋

2. We substitute for 𝑌 the value implied by the 00 nodal type given a 0 value on 𝑋, which
in turn is 0 (see Section 5.2.2).

Calling realise_outcomes() on this model yields the outcomes implied by all causal types:

R> make_model("X -> Y") |> realise_outcomes()

X Y
0.00 0 0
1.00 1 0
0.10 0 1
1.10 1 0
0.01 0 0
1.01 1 1
0.11 0 1
1.11 1 1

In the output above, row names indicate nodal types and columns realized values. Intervening
on 𝑋 (see Pearl 2009) with 𝑑𝑜(𝑋 = 1) yields:

R> make_model("X -> Y") |> realise_outcomes(dos = list(X = 1))

X Y
0.00 1 0
1.00 1 0
0.10 1 0
1.10 1 0
0.01 1 1
1.01 1 1
0.11 1 1
1.11 1 1

In the same way realise_outcomes() can return the realized values on all nodes for each
causal type given arbitrary interventions.

7.2. Causal Syntax

CausalQueries provides syntax for the formulation of various causal queries including queries
on all rungs of the “causal ladder” (Pearl 2009): prediction, such as the proportion of units
where 𝑌 equals 1; intervention, such as the probability that 𝑌 = 1 when 𝑋 is set to 1;
counterfactuals, such as the probability that 𝑌 would be 1 were 𝑋 = 1 given we know 𝑌 is
0 when 𝑋 was observed to be 0. Queries can be posed at the population level or case level
and can be unconditional (e.g. what is the effect of 𝑋 on 𝑌 for all units) or conditional (for
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example, the effect f 𝑋 on 𝑌 for units for whom 𝑍 affects 𝑋). This syntax enables users to
write arbitrary causal queries to interrogate their models.

The heart of querying is figuring out which causal types correspond to particular queries.
For factual queries, users may employ logical statements to ask questions about observed
conditions, without any intervention. Take, for example, the query mentioned above about
the proportion of units where 𝑌 equals 1, expressed as "Y == 1". In this case the logical
operator == indicates that CausalQueries should consider units that fulfill the condition of
strict equality where 𝑌 equals 1.6 When this query is posed, the get_query_types() function
identifies all types that give rise to 𝑌 = 1, absent any interventions.

R> make_model("X -> Y") |> get_query_types("Y==1")

Causal types satisfying query's condition(s)

query = Y==1

X0.Y10 X1.Y01
X0.Y11 X1.Y11

Number of causal types that meet condition(s) = 4
Total number of causal types in model = 8

The key to posing causal queries is being able to ask about values of variables given that
the values of some other variables are “controlled”. This corresponds to application of the
do operator in Pearl (2009). In CausalQueries this is done by putting square brackets [ ]
around variables that should be intervened upon.

For instance, consider the query Y[X=0]==1. This query asks about the types for which 𝑌
equals 1 when 𝑋 is set to 0. In this case, since 𝑋 is being intervened to be zero, 𝑋 is placed
inside the brackets. Given that 𝑌 equaling 1 is a condition about potentially observed values,
it is expressed as using the logical operator ==. The set of causal types that meets this query
is quite different:

R> make_model("X -> Y") |> get_query_types("Y[X=1]==1")

Causal types satisfying query's condition(s)

query = Y[X=1]==1

X0.Y01 X1.Y01
X0.Y11 X1.Y11

Number of causal types that meet condition(s) = 4
6CausalQueries also accepts = as a shorthand for ==. However, == is preferred as it is the conventional

logical operator to express a condition of strict equality.
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Total number of causal types in model = 8

When a node has multiple parents it is possible to set the values of none, some or all of the
parents. For instance if 𝑋1 and 𝑋2 are parents of 𝑌 then Y==1, Y[X1 = 1]==1, and Y[X1 =
1, X2 = 1]==1 queries cases for which 𝑌 = 1 when, respectively, neither parents values are
controlled, when 𝑋1 is set to 1 but 𝑋2 is not controlled, and when both 𝑋1 and 𝑋2 are set
to 1. For example we can have:

R> make_model("X1 -> Y <- X2") |>
+ get_query_types("X1==1 & X2==1 & (Y[X1=1, X2=1] > Y[X1=0, X2=0])")

Causal types satisfying query's condition(s)

query = X1==1&X2==1&(Y[X1=1,X2=1]>Y[X1=0,X2=0])

X11.X21.Y0001 X11.X21.Y0101
X11.X21.Y0011 X11.X21.Y0111

Number of causal types that meet condition(s) = 4
Total number of causal types in model = 64

In this case, the aim is to identify the types for which 𝑋1 = 𝑋2 = 1 and at the same time
𝑌 = 0 when 𝑋1 = 𝑋2 = 0, and 𝑌 = 1 when 𝑋1 = 𝑋2 = 1.

In general, the variables to be intervened, as if conducting an experiment, are placed inside
square brackets, followed by an equal sign and the value to which we want to set them, either 1
or 0. The variable whose value is observed should be placed before the square brackets. Thus
"Y[X=1]" queries the values of 𝑌 when 𝑋 is set to 1. Finally, conditions related to observed
or potentially observed values, in the context of an intervention, are expressed outside the
brackets, along with the logical condition that defines the observed values, as in "Y==1",
"Y[X=1]==1 or "Y[X=1] > Y[X=0]".

Conditional queries

Many queries of interest are “conditional” queries. For example the effect of 𝑋 on 𝑌 for units
for which 𝑊 = 1. Or the the effect of 𝑋 on 𝑌 for units for which 𝑍 has a positive effect
on 𝑋. Such conditional queries are posed in CausalQueries by providing a given statement
in addition to the query statement. The full query then becomes: for what units does the
query condition hold among those units for which the given condition holds. The two parts
can each be calculated using get_query_types. Thus for instance in an 𝑋 → 𝑌 model the
probability that 𝑋 causes 𝑌 given 𝑋 = 1&𝑌 = 1 is the probability of causal X1.Y11 type
divided by the sum of the probabilities of types X1.Y11 and X1.Y01. In practice this is done
automatically for users when they call query_model() or query_distribution().

Complex expressions

Many queries involve complex statements over multiple sets of types. These can be formed
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with the aid of relational operators. For example, you can make queries about cases where 𝑋
has a positive effect on 𝑌 , i.e., whether 𝑌 is greater when 𝑋 is set to 1 compared to when 𝑋
is set to 0, expressed as "Y[X=1] > Y[X=0]". The query “𝑋 has some effect on 𝑌 ” is given
by "Y[X=1] != Y[X=0]".

Linear operators can also be used over set of simple statements. Thus "Y[X=1] - Y[X=0]"
returns the average treatment effect. In essence rather than returning a TRUE or FALSE for
the two parts of the query, the case memberships are forced to numeric values (1 or 0) and
the differences are taken, which can be a 1, 0 or −1 depending on the causal type. Averaging
in effect averages over the share of cases with positive effects, less the share of cases with
negative effects.

R> make_model("X -> Y") |> get_query_types("Y[X=1] - Y[X=0]")

X0.Y00 X1.Y00 X0.Y10 X1.Y10 X0.Y01 X1.Y01 X0.Y11 X1.Y11
0 0 -1 -1 1 1 0 0

Nested queries

CausalQueries lets users pose nested “complex counterfactual” queries. For instance
"Y[M=M[X=0], X=1]==1" queries the types for which 𝑌 equals 1 when 𝑋 is set to 1, while
keeping 𝑀 constant at the value it would take if 𝑋 were 0.

7.3. Quantifying queries

Giving a quantitative answer to a query requires placing probabilities over the causal types
that correspond to a query.

Queries by hand

Queries can be calculated directly from the prior distribution or the posterior distribution
provided by Stan. For example the following call plots the posterior distribution for the query
that probability of 𝑌 is increasing in 𝑋 for the 𝑋 → 𝑌 model. The resulting plot is shown
in Figure 2.

R> data <- data.frame(X = rep(0:1, 50), Y = rep(0:1, 50))
R>
R> model <-
+ make_model("X -> Y") |>
+ update_model(data, iter = 4000)
R>
R> model$posterior_distribution |>
+ ggplot(aes(Y.01 - Y.10)) + geom_histogram()
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Figure 2: Posterior on “Probability 𝑌 is increasing in 𝑋”.

Query distribution

It is generally useful to use causal syntax to define the query and calculate the query with
respect to the prior or posterior probability distributions. This can be done for a list of queries
using query_distribution() function as follows:

R> make_model("X -> Y") |>
+ query_distribution(
+ query = list(increasing = "(Y[X=1] > Y[X=0])"),
+ using = "priors")

query_distribution() can also be used when one is interested in assessing the value of a
query for a particular case. In a sense this is equivalent to posing a conditional query, querying
conditional on values in a case. For instance we might consult our posterior for Lipids model
and ask about the effect of 𝑋 on 𝑌 for a case in which 𝑍 = 1, 𝑋 = 1 and 𝑌 = 1.

R> lipids_model |>
+ query_model(query = "Y[X=1] - Y[X=0]",
+ given = c("X==1 & Y==1 & Z==1"),
+ using = "posteriors")

Table 12: Case level query example.

query given mean sd cred.low cred.high
Y[X=1] - Y[X=0] X==1 & Y==1 & Z==1 0.95 0.04 0.87 1

The answer we get in Table 12 is what we now believe for all cases in which 𝑍 = 1, 𝑋 = 1
and 𝑌 = 1. It is in fact the expected average effect among cases with this data type and so
this expectation has an uncertainty attached to it.

This is, in principle, different to what we would infer for a “new case” that we wonder about.
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When inquiring about a new case, the case level query updates on the given information
observed in the new case. The resulting inference can be different to the inference that
would be made from the posterior given the features of the case. If case_level = TRUE is
specified, this new case level inference is calculated. For a query 𝑄 and given 𝐷 this returns
the value ∫ 𝜋(𝑄&𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖

∫ 𝜋(𝐷|𝜆𝑖)𝑝(𝜆𝑖)𝑑𝜆𝑖
which may differ from the mean of the distribution 𝜋(𝑄&𝐷|𝜆)

𝜋(𝐷|𝜆) ,
∫ 𝜋(𝑄&𝐷|𝜆𝑖)

𝜋(𝐷|𝜆𝑖) 𝑝(𝜆𝑖)𝑑𝜆𝑖.

To simplify, consider a model where it’s clear that 𝑋 causes 𝑌 , but it’s uncertain if this is
through two positive or two negative effects. If we encounter a case with 𝑀 = 0, it’s unclear
if this indicates an effect or not. However, if we randomly find a case with 𝑀 = 0, our
understanding of the causal model evolves, leading us to believe there is an effect in this
specific case, which would not be the case if 𝑀 = 1. The results are shown in Table 13. Here,
the case level query gives a single value without posterior standard deviation, representing the
belief about this new case. The non-case level query summarizes the posterior distribution
for cases with similar data.

R> make_model("X -> M -> Y") |>
+ update_model(data.frame(X = rep(0:1, 8), Y = rep(0:1, 8)), iter = 10000) |>
+ query_model(
+ query = "Y[X=1] > Y[X=0]",
+ given = "X==1 & Y==1 & M==1",
+ using = "posteriors",
+ case_level = c(TRUE, FALSE))

Table 13: Results for a case level query.

query given case_level mean sd
Y[X=1] > Y[X=0] X==1 & Y==1 & M==1 TRUE 0.67 NA
Y[X=1] > Y[X=0] X==1 & Y==1 & M==1 FALSE 0.43 0.33

Batch queries

The function query_model() is perhaps the most important function for querying models.
The function takes as input a list of models, causal queries, and conditions. It then calculates
population or case level estimands given prior or posterior distributions and reports summaries
of these distributions. The result is a data frame that can be displayed as a table or used for
graphing. Table 14 shows output from a single call to query_model() with the expand_grid
argument set to TRUE to generate all combinations of list elements.

R> models <- list(
+ `1` =
+ update_model(make_model("X -> Y"),
+ data.frame(X = rep(0:1, 10), Y = rep(0:1,10)), refresh = 0),
+ `2` =
+ update_model(set_restrictions(make_model("X -> Y"), "Y[X=1] < Y[X=0]"),
+ data.frame(X = rep(0:1, 10), Y = rep(0:1,10)), refresh = 0))
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R>
R> query_model(
+ models,
+ query = list(ATE = "Y[X=1] - Y[X=0]",
+ POS = "Y[X=1] > Y[X=0]"),
+ given = c(TRUE, "Y==1 & X==1"),
+ case_level = c(FALSE, TRUE),
+ using = c("priors", "posteriors"),
+ expand_grid = TRUE)

Table 14: Results for two queries on two models.

model query given using case_level mean sd
1 ATE - priors FALSE 0.00 0.31
2 ATE - priors FALSE 0.33 0.24
1 ATE - posteriors FALSE 0.76 0.12
2 ATE - posteriors FALSE 0.84 0.11
1 ATE Y==1 & X==1 priors FALSE 0.50 0.29
2 ATE Y==1 & X==1 priors FALSE 0.50 0.29
1 ATE Y==1 & X==1 posteriors FALSE 0.91 0.08
2 ATE Y==1 & X==1 posteriors FALSE 0.91 0.09
1 POS - priors FALSE 0.25 0.19
2 POS - priors FALSE 0.33 0.24
1 POS - posteriors FALSE 0.80 0.11
2 POS - posteriors FALSE 0.84 0.11
1 POS Y==1 & X==1 priors FALSE 0.50 0.29
2 POS Y==1 & X==1 priors FALSE 0.50 0.29
1 POS Y==1 & X==1 posteriors FALSE 0.91 0.08
2 POS Y==1 & X==1 posteriors FALSE 0.91 0.09
1 ATE - priors TRUE 0.00 NA
2 ATE - priors TRUE 0.33 NA
1 ATE - posteriors TRUE 0.76 NA
2 ATE - posteriors TRUE 0.84 NA
1 ATE Y==1 & X==1 priors TRUE 0.50 NA
2 ATE Y==1 & X==1 priors TRUE 0.50 NA
1 ATE Y==1 & X==1 posteriors TRUE 0.91 NA
2 ATE Y==1 & X==1 posteriors TRUE 0.91 NA
1 POS - priors TRUE 0.25 NA
2 POS - priors TRUE 0.33 NA
1 POS - posteriors TRUE 0.80 NA
2 POS - posteriors TRUE 0.84 NA
1 POS Y==1 & X==1 priors TRUE 0.50 NA
2 POS Y==1 & X==1 priors TRUE 0.50 NA
1 POS Y==1 & X==1 posteriors TRUE 0.91 NA
2 POS Y==1 & X==1 posteriors TRUE 0.91 NA
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Computational details and software requirements

Version • 1.0.1
Availability • Stable Release: https://cran.rstudio.com/web/packages/

CausalQueries/index.html
• Development:

https://github.com/integrated-inferences/CausalQueries
Issues • https://github.com/integrated-

inferences/CausalQueries/issues
Operating Systems • Linux

• MacOS
• Windows

Testing Environments OS • Ubuntu 22.04.2
• Debian 12.2
• MacOS
• Windows

Testing Environments R • R 4.3.1
• R 4.3.0
• R 4.2.3
• r-devel

R Version • R(>= 3.4.0)
Compiler • either of the below or similar:

• g++
• clang++

Stan requirements • inline
• Rcpp (>= 0.12.0)
• RcppEigen (>= 0.3.3.3.0)
• RcppArmadillo (>= 0.12.6.4.0)
• RcppParallel (>= 5.1.4)
• BH (>= 1.66.0)
• StanHeaders (>= 2.26.0)
• rstan (>= 2.26.0)

R-Packages Depends • dplyr
• methods

R-Packages Imports • dagitty (>= 0.3-1)
• dirmult (>= 0.1.3-4)
• stats (>= 4.1.1)
• rlang (>= 0.2.0)
• rstan (>= 2.26.0)
• rstantools (>= 2.0.0)
• stringr (>= 1.4.0)
• ggdag (>= 0.2.4)
• latex2exp (>= 0.9.4)
• ggplot2 (>= 3.3.5)
• lifecycle (>= 1.0.1)

The results in this paper were obtained using R~3.4.1 with the MASS~7.3.47 package. R itself

https://cran.rstudio.com/web/packages/CausalQueries/index.html
https://cran.rstudio.com/web/packages/CausalQueries/index.html
https://github.com/integrated-inferences/CausalQueries
https://github.com/integrated-inferences/CausalQueries/issues
https://github.com/integrated-inferences/CausalQueries/issues
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and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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Appendix A: Parallelization

If you have multiple cores you can do parallel processing by including this line before running
CausalQueries:

R> library(parallel)
R>
R> options(mc.cores = parallel::detectCores())

Additionally parallelizing across models or data while running MCMC chains in parallel can
be achieved by setting up a nested parallel process. With 8 cores one can run 2 updating
processes with 3 parallel chains each simultaneously. More generally the number of parallel
processes at the upper level of the nested parallel structure are given by ⌊ 𝑐𝑜𝑟𝑒𝑠

𝑐ℎ𝑎𝑖𝑛𝑠+1⌋.

R> library(future)
R> library(future.apply)
R>
R> chains <- 3
R> cores <- 8
R>
R> future::plan(list(
+ future::tweak(future::multisession,
+ workers = floor(cores/(chains + 1))),
+ future::tweak(future::multisession,
+ workers = chains)
+ ))
R>
R> model <- make_model("X -> Y")
R> data <- list(data_1, data_2)
R>
R> future.apply::future_lapply(data, function(d) {
+ update_model(
+ model = model,
+ data = d,
+ chains = chains,
+ refresh = 0
+ )
+})

Appendix B: Stan code

Updating is performed using Stan model. The data provided to Stan is generated by the in-
ternal function prep_stan_data() which returns a list of objects that Stan expects to receive.
The code for the Stan model is show below. After defining a helper function the code starts
with a block declaring what input data is to be expected. Then there is a characterization
of parameters and the transformed parameters. Then the likelihoods and priors are provided.
At the end there is a block for generated quantities which can be used to append a posterior
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distribution of causal types to the model.

S4 class stanmodel 'simplexes' coded as follows:
functions{

row_vector col_sums(matrix X) {
row_vector[cols(X)] s ;
s = rep_row_vector(1, rows(X)) * X ;
return s ;

}
}
data {
int<lower=1> n_params;
int<lower=1> n_paths;
int<lower=1> n_types;
int<lower=1> n_param_sets;
int<lower=1> n_nodes;
array[n_param_sets] int<lower=1> n_param_each;
int<lower=1> n_data;
int<lower=1> n_events;
int<lower=1> n_strategies;
int<lower=0, upper=1> keep_transformed;
vector<lower=0>[n_params] lambdas_prior;
array[n_param_sets] int<lower=1> l_starts;
array[n_param_sets] int<lower=1> l_ends;
array[n_nodes] int<lower=1> node_starts;
array[n_nodes] int<lower=1> node_ends;
array[n_strategies] int<lower=1> strategy_starts;
array[n_strategies] int<lower=1> strategy_ends;
matrix[n_params, n_types] P;
matrix[n_params, n_paths] parmap;
matrix[n_paths, n_data] map;
matrix<lower=0,upper=1>[n_events,n_data] E;
array[n_events] int<lower=0> Y;
}
parameters {
vector<lower=0>[n_params - n_param_sets] gamma;
}
transformed parameters {
vector<lower=0, upper=1>[n_params] lambdas;
vector<lower=1>[n_param_sets] sum_gammas;
matrix[n_params, n_paths] parlam;
matrix[n_nodes, n_paths] parlam2;
vector<lower=0, upper=1>[n_paths] w_0;
vector<lower=0, upper=1>[n_data] w;
vector<lower=0, upper=1>[n_events] w_full;
// Cases in which a parameter set has only one value need special handling
// they have no gamma components and sum_gamma needs to be made manually
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for (i in 1:n_param_sets) {
if (l_starts[i] >= l_ends[i]) {
sum_gammas[i] = 1;
// syntax here to return unity as a vector
lambdas[l_starts[i]] = lambdas_prior[1]/lambdas_prior[1];
}

else if (l_starts[i] < l_ends[i]) {
sum_gammas[i] =
1 + sum(gamma[(l_starts[i] - (i-1)):(l_ends[i] - i)]);
lambdas[l_starts[i]:l_ends[i]] =
append_row(1, gamma[(l_starts[i] - (i-1)):(l_ends[i] - i)]) /

sum_gammas[i];
}

}
// Mapping from parameters to data types
// (usual case): [n_par * n_data] * [n_par * n_data]
parlam = rep_matrix(lambdas, n_paths) .* parmap;
// Sum probability over nodes on each path
for (i in 1:n_nodes) {
parlam2[i,] = col_sums(parlam[(node_starts[i]):(node_ends[i]),]);
}
// then take product to get probability of data type on path
for (i in 1:n_paths) {

w_0[i] = prod(parlam2[,i]);
}
// last (if confounding): map to n_data columns instead of n_paths
w = map'*w_0;
// Extend/reduce to cover all observed data types

w_full = E * w;
}
model {
// Dirichlet distributions
for (i in 1:n_param_sets) {

target += dirichlet_lpdf(lambdas[l_starts[i]:l_ends[i]] |
lambdas_prior[l_starts[i] :l_ends[i]]);

target += -n_param_each[i] * log(sum_gammas[i]);
}
// Multinomials
// Note with censoring event_probabilities might not sum to 1
for (i in 1:n_strategies) {

target += multinomial_lpmf(
Y[strategy_starts[i]:strategy_ends[i]] |
w_full[strategy_starts[i]:strategy_ends[i]]/
sum(w_full[strategy_starts[i]:strategy_ends[i]]));

}
}
// Option to export distribution of causal types
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generated quantities{
vector[n_types] prob_of_types;
if (keep_transformed == 1){
for (i in 1:n_types) {

prob_of_types[i] = prod(P[, i].*lambdas + 1 - P[,i]);
}}
if (keep_transformed == 0){

prob_of_types = rep_vector(1, n_types);
}
}

Appendix C: Benchmarks

We present a brief summary of model updating benchmarks. The first benchmark considers
the effect of model complexity on updating time. The second benchmark considers the effect
of data size on updating time. We run 4 parallel chains for each model. Results of the
benchmarks are presented in Table 16 and Table 17 respectively.

Table 16: Benchmark 1.

Model
Number of Model

Parameters
update_model()

Runt-Time (seconds)
𝑋1 → 𝑌 6 10.85

𝑋1 → 𝑌 ← 𝑋2 20 15.79
𝑋1 → 𝑌 ← 𝑋2; 𝑋3 → 𝑌 262 77.56

Table 17: Benchmark 2.

Model Number of Observations
update_model()

Run-Time (seconds) |
𝑋1 → 𝑌 10 9.04
𝑋1 → 𝑌 100 9.31
𝑋1 → 𝑌 1000 10.56
𝑋1 → 𝑌 10000 14.57
𝑋1 → 𝑌 100000 17.25

Increasing the number of parents in a model greatly increases the number of parameters and
computational time. The growth of the parameter space with increasing model complexity
places limits on feasible computability without further recourse to specialized methods for
handling large causal models. Data size increases here have a more modest effect on compu-
tation time.
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