Bounds on least squares estimates of causal
effects in the presence of heterogeneous
assignment probabilities

Macartan Humphreys*
Columbia University
mh2245Qcolumbia.edu

December 8, 2009

Abstract

In many contexts, treatment assignment probabilities differ across
strata or are correlated with some observable third variables. Re-
gression with covariate adjustment is often used to account for these
features. It is known however that in the presence of heterogeneous
treatment effects this approach does not yield unbiased estimates of
average treatment effects. But it is not well known how estimates gen-
erated in this way diverge from unbiased estimates of average treat-
ment effects. Here we show that biases can be large, even in large
samples. However we also find conditions under which the usual ap-
proach provides interpretable estimates and we identify a monotonicity
condition that ensures that least squares estimates lie between esti-
mates of the average treatment effects for the treated and the average
treatment effects for the controls. The monotonicity condition can be
satisfied for example with Roy-type selection and is guaranteed in the
two stratum case.

*My thanks to Craig MclIntosh, Andy Gelman, Joshua Angrist, Kosuke Imai, Laura
Paler, Neelan Sircar, and Guido Imbens for generous comments on this paper.



1 Introduction

Consider a treatment in which a technology is distributed randomly to chil-
dren and one is interested in the effects of the intervention on their parents.
Randomization notwithstanding, simple comparison of outcomes between
parents with and without treated children may not yield unbiased estimates
of the effect of the technology on parents. The problem is that parents with
more children are more likely to be exposed to the technology. If characteris-
tics of strata (here, parents with the same number of children) are related to
the outcome of interest, then simple differences between outcomes in treated
and control units may yield biased estimates of treatment effects.

More broadly this is an example of a situation in which assignment to
the treatment of interest is “ignorable” only conditional upon observables
(Rosenbaum and Rubin, [1983)).1 As discussed in section 2, this kind of prob-
lem is common and arises both for experimental and observational studies.

In such settings unbiased estimates of treatment effects can be obtained
within each stratum; in this case by comparing outcomes among parents with
a given number of children. Average treatment effects can then be estimated
by averaging such stratum level treatment effects over strata. This is in effect
a matching procedure and it can be implemented using a range of available
software packages (Matchlt in R (Ho, Imai, King, and Stuart], 2007) and
nnmatch (Abadie, Herr, Imbens, and Drukker, |2004) and CEM for R and
Stata (lacus, King, and Porro, 2008)).

In practice, however, many researchers seek to estimate treatment ef-
fects using some form of regression and ‘conditioning’ upon strata. For the
spillover problem described above for example, this might be done by re-
gressing the outcome on parental exposure plus a measure of the number of
children a parent has, or by using a more flexible procedure in which an indi-
cator variable is entered for each stratum. The approach is almost universal
in observational studies in which researchers seek to control for confounds
and it is recommended for experimental work in Duflo, Glennerster, and
Kremer| (2007).

This procedure, though common, can however produce problems if there
are heterogeneous effects. It is known that in such cases regression with co-
variate adjustment produces estimates that can deviate from average treat-

Implicitly we assume that child-to-parent transmission is the only way that parents
are exposed.



ment effects (Angrist| (1998); see also Freedman (2008))). Less well understood
is when these biases arise and how important they are likely to be. Our con-
tribution is to provide an interpretation of the least squares (OLS) estimate,
note conditions under which OLS estimates are ‘close’ to causal quantities
of interest, and identify a simple monotonicity condition that ensures that
OLS estimates are bounded by such causal quantities of interest. We provide
illustrations from real and simulated data that show when and how standard
approaches can yield inaccurate or accurate results.

2 Applications

The situation in which assignment to treatment is random only conditional
upon stratum arises in a diverse range of experimental and observational
settings.

One family of cases, highlighted above, arises when researchers are inter-
ested in spillover effects. In this case the treatment of interest is often not
the same as the treatment that is directly under the control of the researcher
and treatment assignment may be related to covariates. Say for example n
individuals are linked through friendship relations and some technology is
randomly distributed to k of these. Say that the treatment of interest is
second-hand exposure to the technology, which occurs if one or any of one’s
immediate friends receives the technology. In this case an individual j with
s; friends (s; small relative to n) is assigned to treatment with probability
pr = 1 — (=£)%T. The assignment to the treatment of interest is thus
correlated with the number of friends one has, but random conditional upon
the number of friends. A problem of this form is examined by Miguel and
Kremer| (2004) and |Oster and Thornton (2009)).

A second set of applications can arise when the definition of the treat-
ment depends on features of units. Thus for example, in studies in which
individuals are randomly matched with partners, the probability that an
individual is matched with a same sex or same ethnicity partner depends
on the distribution of sexes and ethnicities in a population (Habyarimana,
Humphreys, Posner, and Weinstein, 2007). In this case an individual from a
group with relative size s; will encounter an individual from the same group
with probability p; = s;.

Two other sets of applications arise from the manner in which random-
ization is conducted. First, if two or more treatments are randomly assigned



using correlated probabilities then assignment to one treatment may be corre-
lated with assignment to another but each can be random conditional upon
the other. A similar logic arises if individuals are assigned to treatment
through two or more lotteries with different probabilities associated with
each.

A final, and perhaps most common set of applications, occurs in observa-
tional data when third factors are plausibly correlated with both an indepen-
dent variable of interest and the outcome variable and in which researchers
claim that they can identify and measure all such variables. An important
example is the situation in which individuals self-select into treatment on the
basis of expected gains (Roy, 1951)). Say for example that each individual in
group j expects to gain 7; from a treatment but faces an individual cost to
participating of €¢; where ¢; is independent and identically distributed for all
individuals in the population according to density F'. In this case, if individ-
uals select into treatment whenever benefits exceed costs, the probability of
treatment for an individual in group j is p; = F(7;).

In such cases researchers often seek to estimate treatment effects after
controlling for third variables or strata. We now describe the quantities that
are estimated using such an approach and how they relate to causal quantities
of interest.

3 Results

We consider the case in which assignment to a binary treatment is ignor-
able conditional upon membership in a stratum. Let n, denote the number
of units in stratum =z, w, the share of all units that are in stratum z and
pr € (0,1) the share of units in stratum x that receive some binary treat-
ment. Note that with p, € (0,1) we assume that there is “overlap” in the
sense that each stratum contains treated and control units. We take the col-
lection (p,.) to be equivalent to the stratum level propensities of assignment to
treatment. Employing the potential outcomes framework (Rosenbaum and
Rubin, [1983), let y;; and y;.. denote the value on some outcome variable
that unit ¢ in stratum x would take if allocated to treatment and control
conditions respectively. The causal effect of the treatment on unit ¢ is given
by T = Yizt — Yize-

Unfortunately 7; cannot be estimated since only one of y;,; and ;.. is
observed. However, under conditions described by Rosenbaum and Rubin



(1983) and others the average treatment effect for units in stratum z, 7,
can be estimated without bias by 7, = Uut — Yse, Where gz (resp y.) is the
average value of y for treated (resp. control) units in stratum x; these are
well defined under our assumption that there are both treatment and control
units in each stratum. Under these conditions unbiased estimates of the
average treatment effect (Targ), the average treatment effect on the treated
(Tarr), and the average treatment effect on the controls (Tarc) (sometimes
referred to as the ATU) are given by:
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In each case, these estimates of average treatment effects are weighted
averages of estimates of the stratum level treatment effects, 7,,. What differs
is the weighting: the Torr places more weight on the treatment effect of
strata with many treated units, the Torc places more weight on the treatment
effect of strata with few treated units. Clearly if p, = p; for all z, j, then

TATE = TATT = TATC-

3.1 Least squares estimates

Now consider an estimate of treatment effects resulting from a model in
which the outcome is regressed on treatment and a set of indicator variables
for each of the strata using OLS. In this case OLS also returns a weighted
average of the stratum level treatment effects, however, the weights used by
OLS reflect the variance in treatment, not the degree of treatment, within
each stratum (Angrist, 1998). In particular:

xX w(l; -~
boLs = Z Z il p Ta (4)
J
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We see that borg can differ from Tarr, Tarc and Targ; indeed since OLS
weights can take any value between 0 and 1 for any stratum, depending
only on the values taken by the collection (p,), for a given collection of



estimated stratum treatment effects (7,) and sizes (w.), bors can take any
value between min(7,) and max(7,).

Thus bors does not correspond to estimates of average treatment effects;
does this mean that it is incorrect? In fact, as we see from (4), bors, like
each of the treatment effects in (1)-(3), is a weighted average of estimates of
the fundamental causal quantities of interest, the within-stratum treatment
effects (7). Each of these averages provides a way to summarize these mul-
tiple, possibly heterogeneous, causal quantities, but does not generate new
causal information. Determining what type of averaging, if any, is appro-
priate, is a substantive, not an inferential, question. The Taprr reports the
historical effects; for a program implementer for example, the ATT provides
information on what the effects of an implemented program were. The Tarc
reports an estimate of potential effects in untreated units; for a program
implementer, it provides information on what would happen in the control
areas if the program were expanded. The Tjorgp combines estimates of his-
torical and hypothetical effects to provide an estimate of what the expected
effect would for a typical unit in the study population.

In the same way bors provides another average, one that is based on
variance rather than prevalence. Indeed bprg corresponds exactly to what
Crump, Joseph, Imbens, and Mitnik| (2006)) identify as the most precisely
estimable average treatment effect (under homoskedasticity). This consider-
ation provides a statistical but not a substantive justification for a focus on
bors. One substantive interpretation of the quantity estimated by bor g is the
following. Say that stratum level treatment effects are independently drawn
from some distribution of possible effects, f, with expectation 7*. Making
statements about average treatment effects given a realized distribution of
T,S requires estimating Tarp = ), %ﬁ, but making statements about the

expected treatment effects for some new (out of sample) stratum requires es-
timating 7*. Thus there is independent interest in estimating 7*. Clearly if
estimates of stratum level treatment effects are unbiased then T47x gives an
unbiased estimate of 7*; bors could however give a lower variance unbiased
estimate of 7% if (p,) and (7,) are independent. In fact, as given in our first
proposition, with independence and homoskedasticity, bors is the minimum
variance unbiased estimate of 7% among all averages of (7).

Proposition 1. If outcomes are distributed with constant variance condi-
tional upon observables and (p,) and (7.) are independent, then in the class
of conver combinations of (T,) the minimum variance unbiased estimate of
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Proof. See appendix. O

An application of this result might be the following. Say that a subset
of provinces (strata) are randomly selected for study and that lotteries are
held in each one, with selection probabilities in each stratum that may differ
but for reasons unrelated to potential outcomes. Then, assuming constant
variance, the least squares estimate provides an efficient unbiased estimate
of treatment effects in unsampled provinces.

The proof of the proposition proceeds similarly to that in Crump, Joseph,
Imbens, and Mitnik (2006). Independence is important for the result. If (p,)
and (7,) are not independent then 7% may not be unbiased, even though
treatment is ignorable conditional upon observables. To illustrate, say there

are two equally sized strata, that 7, ~ U[0,1] and that p, = %. Then

- L a-im)n+in-1n)r
7% = 0.50 but: E(7*) = E <2 10 p7nit (i) 2) ~ 0.57. More generally,

r1(1=571)+572(1—572)
whereas the expected value of Torg does not depend upon assignment prob-
abilities, confidence in the bporg estimate requires confidence that there is no
correlation between (7,) and (p.(1 — p,)). This may be difficult to defend
when neither the stratum treatment effects nor the assignment probabilities
are homogeneous.

While under some circumstances there may be substantive arguments for
examining the particular OLS averaging, when assignment probabilities and
treatment effects are not thought to be independent, bprs may not be a
fundamental quantity of interest. In such cases it is of interest to know how
bors compares to estimates of average treatment effects. Before introducing
our main result we note three immediate results that relate bors to Targ,
Tarr and Tarc.

[} FiI"St, if for all Z, j, ?m = 7/'} then bOLS = ?ATE = ?ATT = ?ATC-
With the same estimates of treatment effects in each stratum, different
averagings yield the same result.

e Second, if there is some p such that for all z either p, =porp, =1—p
then again bors = Targ. The case in which p, = p for all x corresponds
to a situation in which assignment to treatment is orthogonal to strata
and in this case bors = Tare = Tarr = Tarc. Moreover in this case
least squares returns 747 g even if strata are ignored. In the other cases,



in which assignment to treatment may not be orthogonal to strata (but
for some x, j, p, = 1 — p;), bors still corresponds to the T4rp when
strata effects are included, although failing to condition on strata can
produce bias.

Pz (1—;09:) ~ Px

. . . . pz(l_pz) ~
e Third, since S o) ¥ T8 if p, is small for all x and <*—"*~

S ,pi(l—py) ™
—Z}(_lzfpj) if p, is large for all x we have that borg ~ Tarr for ‘rare’
J

treatments and bors & Tarc for ‘common’ treatments.

These three results provide some guidelines for when bprg is close to
quantities of interest. However, when these conditions do not hold the differ-
ences between bors and treatment effects of interest can be large. In addition
since neither borg or Tarr depend on sample sizes, systematic differences be-
tween them can obtain for arbitrarily large amounts of data. It is natural to
ask then under what conditions are there tighter bounds than min (7,) and
max (7,) on bors.

3.2 Monotonicity

Our main result establishes that if assignment probabilities are monotonic in
within-stratum treatment effects, then the OLS estimate lies between Tarc
and Tarr. As we note below, an implication is that if Ta7¢ and Tapr are
themselves unbiased then under the conditions of the proposition, the least
squares estimate is expected to lie between the expected values of T47¢ and

TATT-

Proposition 2. If for all z, j, p, > p; < T, > 7;, or if for all x, j,
Pe < pj < Ty > T, then bors € Conv{Tarc, Tarr}

Proof. See appendix. O]

Monotonicity is thus a sufficient condition for borg to lie between Tarc
and Tarr (the proof of the proposition identifies sharp conditions that are
weaker than monotonicity).

We note that there is in general no ez ante reason to expect a monotonic
relation between the 7, and the p,. However, such relations may arise if both
7. and p, reflect some systematic feature of units. In the case of spillovers
considered above for example, a monotonic relation could hold if more con-
nected subjects are not just more likely to receive treatment but are also



more (or less) likely to be influenced by a new technology. Monotonicity is
also natural in the case of a Roy-type selection model as described above: one
subject is more likely than another to select into treatment precisely because
he or she predicts greater benefits from treatment.

Finally we note that while monotonicity ensures that bors lies between
Tarr and Taro there is no guarantee that T47r and Tare are close to each
other. Indeed, all else equal, the difference between these two is greatest
under monotonicity.?

3.3 Special case with two strata

The relation between bprs and treatment effects is particularly simple in the
two stratum case. In this case, since monotonicity is guaranteed, we have
the following corollary.

Corollary 1. If there are two strata then bors € Conv{Tarc, Tarr}

Moreover a somewhat stronger statement is possible in this case. With
two strata, borg is a convex combination of 7477 and Tarc, with weights that
depend only on the probability of assignment to treatment. In particular,
for py, pe € (0,1), the weight on Tapr is given by

A\ _ P1wr + paws 5
ATT = "prw; p2w2 ( )
1—p2 1-p1

In general however with more than two strata there is no guarantee that
bors lies between T47r and T4rc. An implication is that even when it does,
the weights on Tarr and T47¢ do not depend on propensities alone, but also
on the particular values taken by the collection (7;).

3.4 Estimators and estimands

Proposition 2 provides a condition under which least squares estimates of
treatment effects lie between estimates of the AT'C, Tarc, and estimates of
the ATT, Tarr. There is no guarantee however, even in the simplest case,
that least squares estimates will lie between the estimands ATT and ATC.

2In particular, given sets (7,)%_; and (p,)*_; for k equal sized strata E(ATT — ATO)
is maximized (resp. minimized) by a (bijective) mapping h : {1,2,...k} — {1,2,...k} for
which (7,)%_; is monotonically increasing (resp. decreasing) in (py;))%_;.
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To illustrate, consider a case with one stratum and two units, one of which
is to be assigned to treatment, with y;. = y1; = 0 and yo. = yo; = 1. Clearly
7; = 0 for each 7 and so whatever the assignment to treatment ATT =
ATC = ATE = 0, however if unit 1 is assigned then bors = Targ = —1 and
if unit 2 is assigned then bors = Tare = 1.

Nevertheless, there is an immediate version of Proposition 2 for estimands;
specifically, fixing the share of units in each stratum that receives treatment
according to (p,), if for each stratum z, 7, provides an unbiased estimate for
T, then under the conditions of the proposition, the least squares estimate
lies between the expected value of ATT and the expected value of ATC in
expectation. That is E(bors) € Conv(E(ATC),E(ATT)).

4 TIllustrations

We provide four illustrations of these relations.

4.1 Two strata illustration

Figure 1 illustrates the relations between bors and treatment effects for a
case with two equally sized strata. We set treatment effects at 0 and 1 all
units in stratum 1 and stratum 2; we set the propensity to 0.25 for the first
stratum and let the propensity for the second vary between 0 and 1.2 The
figure shows that in this case bors can diverge substantially from AT E but,
since there are only two strata, it always lies between ATT and ATC.

3For this and the next two illustrations we assume constant treatment effects within
strata and ignore the distinction between 7, and 7.
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Comparison of Treatment Effects
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Figure 1 Treatment effects for p; = .25, w; = wy, 7, = 0 and 7, = 1 for ps
in (0,1). We see: (i) All estimates coincide when p; = py = .25 (ii)
bors = ATE when py = 1 —p; (iii) bors = 0 = 71 (and data on stratum 2 is
ignored) at extreme values of py (iv) bors is ‘close’ to ATT when p, is small
and (v) bors lies between AT'C and ATT for all values of p,.

4.2 Failure of monotonicity with three strata

Now consider a case with three equal sized strata in which:

n o= 3 n :% \/Tg
T = =3 P2 I%
T3 = 3 P3 %‘i‘%g

In this case it is easy to verify that ATE = ATT = ATC = 1 but
bors = —1. The divergence arises from the fact that stratum 2 has the
greatest treatment variance and so is weighted more heavily by bors than by
ATT and ATC.

The next two examples show situations in which bprg sometimes does and
sometimes does not lie between ATT and AT'C' depending on the relation
between (p;) and (7;); in the first case we examine a spillover problem, in
the second we revisit data on the effects of participation in the military on
earnings of applicants.
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4.3 Approximate monotonicity with a continuum of
strata

Consider next the problem in which assignment to treatment is related to how
connected one is on a network. Let k ~ U|0, 1] denote the connectedness of a
subject and assume that more connected individuals are more likely to receive
treatment according to p(k) = vk. Say that connectedness is associated
with worse outcomes in general and that treatment has a positive effect
but the effect is strongest for people with close to some optimal degree of
connectedness, 7. In particular we assume y(T, k|y) = Tx (1 — (v — k)*)—k.
In this case, 7; is decreasing in k for v = 0 and increasing for v = 1; it is non-
monotonic (concave) for intermediate values of v but ‘closer’ to monotonic
for extreme values.

<
—

Estimated effect

0.7
|

Naive

\

0.5
|

0.3 0.4 0.5 0.6 0.7

Figure 2 Treatment effects for p(k) = vk,

y(T.k|y) =T x (1 =y —k)*) —k and k ~ U[0,1]. In this case ATE(k) is
closer to monotonic in p(k) for v close to 0 and 1. The shaded band in the
figure marks the region between ATT and ATC. The width of this band is
greatest for extreme values of v. We see that the naive estimate diverges
from all treatment effects, bors lies between ATT and ATC when - is close
to 0 or 1 but lies above both for intermediate values of ~.
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The ATE, ATT, ATC, bors and naive estimates (simple difference in
means) for this case are as shown in Figure 2. The naive estimate is biased
down since it fails to take account of the fact that more connected individuals
(who are also more likely to receive treatment) fare more poorly, independent
of the treatment. The OLS estimate lies between ATT and ATC for more
extreme values of v, but not for intermediate values. Finally we see that the
difference between ATT and ATC is greatest for extreme values of ~.

4.4 Estimates of the effects of military service on earn-
ings

Our final illustration revisits the analysis of |[Angrist| (1998)). Angrist examines
the effects of military service on subsequent earnings, for subjects broken
down by race. Ignorability is defended on the basis that the population
under study consists entirely of applicants and most of the data employed
by the military to select individuals from this pool (age, schooling and test
scores) are available to the researchers. Plausibly, then, participation in the
military is random conditional upon these features.

The outcome of interest is earnings which was gathered from social secu-
rity earnings data and matched to the profiles of 750,000 applicants to the
military, themselves grouped into 5654 strata /treatment combinations.?

An interesting feature of this study is that outcome data is available
for multiple years, from the mid 1970s to the early 1990s. The analysis
suggests that service had a positive effect on earnings for white veterans in
the early 1980s (when they were insulated from the economic recession) but
has negative effects in later periods. Nonwhite veterans experienced positive
gains throughout the 1980s. In terms of our examination of treatment effects,
the multiple outcome measures mean that associated with each individual
there is a single assignment probability p;, but multiple stratum treatment
effects, ;. It is possible that the relations between (p;) and (7;) vary over
time, possibly resulting in different relations between regression estimates
and treatment effects.

“Due to lack of balance there are 3,167 strata 2,487 of which contain both treatment
and control cells. In the replication below we limit attention to the strata examined by
Angrist which excludes early applicants and certain education profiles. After removing
these plus strata with null or missing data we are left with an average of 820 strata per
year.
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Effect of service on wages (White sample) Effect of service on wages (Nonwhite sample)
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Figure 3 The top panel shows effects of participation in the military on
earnings of white and nonwhite veterans for years 1974-91. The shaded
band marks the region between Tapr and Tarc, the center line gives the
Tare. The OLS estimate is marked with circles, which are filled whenever
bors lies between Tarr and Tarc. Bottom panels show the relation between
p. and 7, for each group for two time periods. In early periods these
relations are approximately flat and so Tarc =~ Tarr; in later periods there
is a negative (near) monotonic relation and so Tarc > Tarr. In these later
periods bors always lies between Targ and Tarr.

Figure 3 shows that this is indeed the case. In early periods the relation
between (p,) and (7,) was approximately flat. In these periods, Tarc always
lies close to Taprr for both white and nonwhite applicants. In these cases
bors lies close to these treatment effects, but it sometimes lies marginally
outside of conv(Tarr, Tarc). In later years however there is a marked negative
relation between probability of treatment and average treatment effects—
those individuals most likely to be selected (in many cases those with the
highest AFQT scores) were the ones for which participation in the military
would have the most adverse effects on income in the long term. This is true
for both white and non-white groups. For these cases we find, consistent

14



with our results above, that the difference between Taprr and Tarc is larger,
but that bors lies between these bounds. Whereas Angrist found that given
monotonicity in later years borg was greater than T4, our results suggest,
and the data confirm, that bo;s was nevertheless always bounded from above
in these cases by Tarc.

5 Conclusion

Researchers commonly seek to account for covariates that are correlated with
treatment assignment probabilities. This situation can arise even in the
context of a randomized trial when researchers are interested in spillover
effects, when there are multiple correlated treatments, and when treatment
is assigned through multiple lotteries with different assignment probabilities.

If assignment probabilities are known, then matching procedures can be
used to recover average treatment effects; alternatively appropriate weights
can be used; or outcomes can be regressed on strata dummies and a full a set
of interactions between treatment and strata. These solutions all return the
correct results. In practice however the usual approach for estimating the
causal effect of a treatment is to regress outcomes on treatment and some
collection of covariates, possibly allowing for flexible functional forms for the
covariates. This ‘naive’ approach is not guaranteed to produce unbiased esti-
mates of the average treatment effect but it is not well known how estimates
generated in this manner diverge from the Ta7g.

Here we identify conditions under which estimates from the ‘naive’ ap-
proach still approximate quantities of interest. For ‘rare’ treatments the
estimate lies close to the average treatment effect for the treated; for ‘com-
mon’ treatments it is close to the treatment effect for the controls. Under
other conditions, when ex ante propensities are independent of treatment
effects, then least squares may provide an efficient unbiased estimate for
treatments in unsampled strata. Finally when a monotonicity condition is
satisfied least squares estimates produce results that lie between estimates
of the average treatment effect for the treated and the average treatment
effect for the controls. Thus when higher values on third variables are as-
sociated both with more positive (or more negative) outcomes and with a
higher (or lower) propensity to being assigned to treatment, the regression
estimate is bounded by causal quantities of interest. When these conditions
are not met however least squares estimates may diverge substantially and
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range anywhere from the lowest within-stratum treatment effect to the high-
est within-stratum treatment effect.
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6 Appendix

Proposition 1 If outcomes are distributed with constant variance condi-
tional upon observables and (p,) and (7,) are independent, then in the class
of convex combinations of (7,) the minimum variance unbiased estimate of

_ pe(1—pe)we =~
" is 7— bOLS - Z Z p](l p])wJTI'

Proof of Proposition 1. The problem is to choose weights (cv,)*_, with >~ a,

1 to minimize:
~ o 2 ~
r <E Cthx> = E azvar (7,)
T X

Letting T" and C denote the set of treatment and control units respectively,
and S, the collection of units in stratum x, we have:

~\ <ZTnSz Yn ZCMSI Yn )
var(7,) =var -

P Wy (1 - pac)wzn
o ol
T pawen (1 = pa)wen
(1= pa)wenogs 4+ pywynol
 pe(l = po)(wen)?

where o7, is the variance of outcomes in treatment group k and stratum .

Under constant variance, o2 = 02 = o2

. (1 =pownct + pywyno?  o? 1
var(7,) = 5 = —
px(l - px)(wxn) n px(l - pr)wx

And so the problem is to find

o? a? a?
arg min ————* | =arg min T —
(02)hy Z n pa(l = pr)ws (), Z Pa(1 = pa)we

which has solution:

. = p:}c(l _px)wz
> pi(1 = pjlw,
And so the minimum variance estimate of 7* is

pm 1 - px Wy A
™ = = = bors
Z Z pi(1 p])w]
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Proposition 2 If for all z, j, p, > p; < 7, > 7;, or if for all z, j,
Pz < pj < Ty, > 7, then bors € Conv{Tarc, Tarr}

Proof of Proposition 2. We consider the case in which p, is monotonically
increasing in 7, and so Tarr > Tarc. The proof for the case in which p, is
monotonically decreasing in 7, is similar.

Assume first contrary to the proposition that borg > Tarr. Then:

<

2
2 :A PaWy DLWy
7—:1: —~ >O
(Zpﬂj ZP?%’)

But this yields a contradiction since under monotonicity

2
pmwx pxwm
E Ty — <0
(ijwj ZP?%)

To see this note that:

2
Zj p;jw; Zj pjw;

Zj w;p;(pj — Pa) =0

Hence Zp“”? - — £ ?”“;“” - is greater than or equal to 0 for all p, less than
jPiW; Zj pjw;
some value p* and less than or equal to 0 for all p, greater than p*. The

greatest value that > 7, (g’;@; — Z’%ﬁ’;) can take is with 7, as high as
' Wj G Wi

possible for all x with p, < p* and as low as possible for all x with p, > p*
subject to preserving the ordering that 7, > 7; if p, > p;. Thus the highest
value is attained when 7, = AT E* for all x and some ATE*. But in this

. 2 - 2
case, since ) ( PoWo  _ Ppto > = 0, we have 3.7, < Pawr  _ _PiWs > —0

Y ppiwi X Piwj Ypjw; Y piw;

. —~ 2
and so in general > 7, (2’:’2“_’; — fﬁ;) <0.
j W W
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In the same way if bors < Tarc. Then:

>opil—piw; 2 (1= pjlw;

—
Z - (1 —ps)w _ (1—ps) U; <0
A\ X M =pjw; 325 (1 —py)w;
But again we have a contradiction since under monotonicity
~ 1— x T 1_ x 2 x
Z - (1 —po)w _ (1 —pa) U; >0
e > (L=pjw; 32 (1 —pj)w;

This is established in the same way:

> L=pw; 3 (1 —pj)Pw; —
Nd
Zj (1 = pj)w;j(pz —p;) 2 0
(1—pa) _ (1*p1)2 : : : 143
Thus S p) S Oop 2 I nonnegative for high p, and nonpositive for
j j j j

= ( (Q-pawe  (1—ps)’ws 3
low p,. The lowest value ) 7, (Z oy — 3 (kpj)ij) can take is when
strata with high (resp. low) p, have as low (resp. high) a value of 7, as is con-

. . C . . ~ (I1=po)we (1=ps)’ws \ _
sistent with monotonicity, in which case ) 7, (Z ooy — 50 (1—pj)2wj> = 0.
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