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Abstract
This paper considers political interactions between internally

fragmented groups in institutionally weak environments. In these
environments, political actors cannot depend on majority deci-
sions to be enforced or expect bargained agreements to be hon-
ored. Instead, they try to unilaterally alter the status quo, using
violence or in‡uence to pull it one way or another.

A status quo in this context is considered stable when the
combined e¤ects of the equilibrium strategies of di¤erent actors
serve to cancel each other out exactly – leaving the status quo
untouched. Ironically, the –costly– equilibrium of the game turns
out to have equivalence properties with solutions in institution-
ally rich environments; in these environments the same outcome
would be achieved without the costs incurred in institutionally
weak environments.

The aim of the project is to address questions of the form:
how do outcomes in institutionally weak environments compare
to outcomes in institutionally rich environments? how does the
aggregate level of violence vary with the coalitional, or perhaps
ethnolinguistic structure of a polity? how does it vary as a func-
tion of the degree of homogeneity within organized groups and the
heterogeneity across groups? or with the cost of violence? and
how do political outcomes vary as the distribution of preferences
become more polarized?
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1 Introduction

The theoreticians of the Popular Front do not essentially
go beyond the …rst rule of arithmetic, that is, addition: “Com-
munists” plus Socialists plus Anarchists plus Liberals add up
to a total which is greater than their respective isolated num-
bers. Such is all their wisdom. However, arithmetic alone
does not su¢ce here. One needs as well at least mechanics.
The law of the parallelogram of forces applies to politics as
well. In such a parallelogram, we know that the resultant is
shorter, the more component forces diverge from each other.
When political allies tend to pull in opposite directions, the
resultant proves equal to zero.

Leon Trotsky
“The Lessons of Spain: The Last Warning,” Socialist Ap-

peal January 8th and 15th, 1938

This paper mixes non-cooperative and cooperative game theory to
study political action by internally fragmented groups in institutionally
weak environments. Unlike many models of political decision making,
I do not assume that political actors may write enforceable contracts
with each other or that decisions voted or agreed upon will be imple-
mented. I allow for the possibility however that such cooperative action
can be achieved within subgroups of a population –within groups that,
for whatever reason, have overcome collective action problems. In a
Hobbesian world, such subgroups consist of single persons. Groups that
fail to solve collective action problems impose externalities upon each
other. They take actions unilaterally to push or pull state variables one
way or another in ways that may greatly harm other actors.

To model these processes I adopt the framework of the spatial model,
a framework typically used for modelling cooperative games. By using
a spatial framework to study non-cooperative games between groups we
can allow for very rich policy spaces within which players act. And we
can assume arbitrary distributions of preferences over these spaces. It
could for example be that the policy space represents a set of policies
being put in place in a one party state, it could represent the distribution
of land seized by warlords in Liberia or Somalia, it could represent the
level of e¤ective taxation on di¤erent commodities. And so on. In
general we may expect that the status quo does not satisfy all players and
that sometimes joint gains may be made by some or all players whereas
at other times improvements for some imply worse situations for others.
It could be that players are clustered by interest, perhaps in accordance
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with their ethnic group or class status. Or cross-cutting cleavages may
exist, with members of identi…able groups spread throughout the policy
space.

In all cases I assume that although institutions may exist that require
that players cooperate, at any point in time players may be able to
ignore the institutions and force a change in the status quo. They
could take military action to attempt to seize resources from one or
another player, or place diplomatic or not so diplomatic pressure on
policy makers, bureaucrats or other political actors. If players take
such unilateral actions we may expect some change in the status quo.
But any new status quo reached through such unilateral actions may in
turn be susceptible to further attempts by players to alter it. A stable
state in this context would be one where actions by players leave the
status quo unchanged, given that the action by each player is a best
response to the actions of the others, at every point in time.

The research project has three components. The …rst component
addresses situations where no bargains are possible and all players act
unilaterally. The second section produces results when coalitional struc-
tures exist and are given exogenously. In this context a “coalitional
structure” is a partitioning of the population of a polity into groups
within which e¢cient bargaining is possible. These “coalitions” are
subgroups that for whatever reasons have succeeded in providing insti-
tutions to enforce contracts among their members. If we believe that
ethnolinguistic groups have an ability to enforce deals among their mem-
bers then it is natural to interpret the coalitional structure of a polity
in terms of the ethnolinguistic fragmentation of the country. These …rst
two parts are presented in this paper. The third part, underway as a
companion paper, uses these results to endogenize the coalitional struc-
ture of a polity. It addresses the questions: when will players choose to
bargain and when will they choose to brawl? Is there a relation between
a player’s preferences relative to those of the rest of the group and his
incentives to bargain or to brawl?

This paper lays the foundations for this work. And it provides a
structure in which we can address questions of the form: how do out-
comes in institutionally weak environments compare to outcomes in in-
stitutionally rich environments? how does the aggregate level of vio-
lence vary with the coalitional, or perhaps ethnolinguistic structure of
a polity? how does the aggregate level of expenditure on violent activ-
ity vary with the cost of violence? with the distribution of strength in
a polity changes? or with the degree of homogeneity within organized
groups and the heterogeneity across groups?
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2 The Model

Action takes place in discrete time. I use subscripts when necessary to
indicate periods of play. Subscripts are also used to index dimensions
and superscripts are used to index players or to identify groups. Sets,
such as the set of all players, M, a set of players in some coalition, Ck,
or some set of coalitions, C, are denoted by capital letters in script. I
use jAj to denote the number of elements in a set, A.

At the beginning of any period of play the state over which rivalry
exists is described by a vector yt¡1 2 Rn. At every moment in time,
players each optimally choose a level and direction of force to apply to
this state. Formally, we say that an “action” in time t for a player i
is a vector, vit drawn from an action space, Rn. To provide a mapping
from the possibly con‡icting actions of the players to changes in the
state variable, I assume that changes in the state satisfy Newton’s laws
of motion, that is, that the net force acting upon a point is determined
by computing the vector sum of all the individual forces acting upon the
point.1 Hence we have yt = yt¡1 +

P
i2M

vit.

A “strategy” for a player in time t; ¾it consists of a collection of
actions ¾it = fvit+s¡1gs=1;2;::T for games of length T beginning in period
t. In a one period game, ¾it = vit. A Nash equilibrium pro…le of
strategies in some period of play, ¾¤t ´ f¾i¤t gi2M is a pro…le with the
property that each strategy by a player, i, ¾i¤t , maximizes her utility
given the strategies of all the other players, ¾t=f¾i¤t g. I refer to elements
of such a pro…le as “equilibrium strategies.” Equilibrium strategies
have typical elements vi¤t , which I refer to as “equilibrium actions.” I
say that a point, y¤, is an “equilibrium point” or a “stable point”

if at time t, y¤ +
rP
s=1

P
i2M

vi¤t+s¡1 = y
¤ for r = 1:::T . That is, a point is

stable if it remains …xed through all subsequent rounds when all players
play equilibrium strategies; or alternatively, if all equilibrium actions
by all players exactly o¤set each other in all subsequent rounds. The
“magnitude” of force exerted by applying a vector vit to the status quo
is given by the length of vit, jvitj.

I assume that players pay a cost, ci (vit) of applying a force, vit, and
1More complex mappings or families of mappings could also be considered. It is

striking however how closely the Newtonian mapping informs more informal treat-
ments of con‡ictual political action, such as Trotsky’s description of action among
allies in Spain. Before Trotsky, Engels wrote: “History is made in such a way that
the …nal result always arises from con‡icts between many individual wills, of which
each again has been made what it is by a host of particular conditions of life. Thus
there are innumerable intersecting forces, an in…nite series of parallelograms of forces
which give rise to one resultant: the historical event.” letter to Bloch Sept 21 1890.
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that this cost is quadratic in the magnitude of the force applied. I allow
di¤erent actors to vary in the costs they face for any given magnitude of
force applied: ci (vi) = jvij2

¼i
, where ¼i, 0 < ¼i < 1, a scalar, is a measure

of strength (the greater the strength, the lower the costs of any given
action).2 I assume that utility functions take an additive form with
constant discount rates: V it = u

i(yt) ¡ ci(vit) + ±
£
ui(yt+1)¡ ci(vit+1)

¤
+

::: + ±T¡1 [ui(yT )¡ ci(viT )]. Hence, utility is additive in utility in the
state variable, yt, and in costs and it is also additive over time. For
developing most results I also assume that the subutility function
ui(yt) is quadratic in distance from a player-speci…c, time invariant ideal
point: xi 2 Rn, ui(yt) = ¡(jyt ¡ xij)2.

A “coalition” is a set of players drawn from M. A “coalitional
structure” is a partitioning of M into a set of coalitions.3 The “grand
coalitional structure,” denoted by fMg, is the coalition that includes
all players, f1; 2; 3:::jMjg. The “atomistic coalitional structure,”
denoted by hMi, is the coalitional structure where each coalition con-
sists of a single player, ff1g; f2g; f3g:::fjMjgg. The partitioning of
any subset, A, of M into singletons is similarly denoted hAi. The
“dispersion” of a group, A, is written ½(A) and is de…ned for players,
i 2 A, with ideal points in n dimensions as the sum over all the dimen-
sions of the variance of the distribution of the ideals of the players on

each dimension : ½(A) = 1
jAj

nP
j=1

P
i2A

£
xij ¡ ¹xj

¤2
. The “weighted disper-

sion” of a group A, given some weighting vector ¼2 RjAj is given by

½(Aj¼) ´ 1P
i2A

¼i

nP
j=1

P
i2A
¼i

"
xij ¡

P
i2A

¼ixi

P
i2A

¼i

#2
. That, is ½(Aj¼) is the sum of

the weighted variance of the group over each dimension. Note that if ¼
describes uniform weights, then ½(Aj¼) = ½(A). Note also that ½(Aj¼)
is homogenous of degree 0 in ¼. Finally, I say that a player, i 2 A, is a
“dominant player” with respect to a group, A, if ¼i ¸ 1

2

P
k2A

¼k.

2¼i could also be interpreted as the reciprocal of the price that players face to
acquire military technology. Under this interpretation a quantity of technology jvij2,
sold to i at the unit price 1

¼i is required to purchase an action of magnitude jvij.
3That C is a partitioning implies that if C1; C2;... CjCj are coalitions, and C =

fC1;C2; :::CjCjg is a coalitional structure then (1) Ck \ Ch = 0 for any Ck 6= Ch in C
and (2)

S
Ck2C Ck = M.
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3 The Atomistic Game: The War of All Against All

Me and my clan against the world;
Me and my family against my clan;
Me and my brother against my family;
Me against my brother.

- The hierarchy of priorities, as ordered by a Somali
proverb (Peterson 2000)

In this section I consider the game where there are no coalitions.
Each actor acts atomistically attempting to maximize his utility while
imposing externalities on other players. I …rst consider the stage game
where all players have quadratic subutility functions. The stage game
is important insofar as it characterizes situations where actions may
only be taken once or situations where actions may be taken multiple
times but players have extremely high discount rates. I then turn to
the iterated stage game, asking how policy changes when myopic players
are allowed to repeat the stage game for an arbitrarily large but …nite
number of periods. I then turn to the situation where players are so-
phisticated and take account of equilibrium actions that they and other
players will take in the future. It turns out that when players are of equal
strength, the stable point is the same in the stage game, in the repeated
game with myopic players and in the repeated game with sophisticated
players. In all cases the stable point is given by the mean of the ideal
points of the players. For the utility functions assumed, this point is
also the utilitarian welfare maximizing point. When players are asym-
metric in strength, the stable point in repeated game with sophisticated
players di¤ers from that of the stage game and the repeated game with
myopic players, tending, ceteris paribus, more towards the ideals of the
stronger players. These key results are developed under the assump-
tion of quadratic utility. In the fourth part of this section, however,
I consider a very broad class of utility functions and demonstrate that
for this class of utility functions a point is stable if and only if it is the
weighted utilitarian maximum, where weights are given by the relative
strengths of the players. I end with a short section that summarizes the
key …nding of this section and that provides an example of equilibrium
actions in a two person game in two dimensions in order to elucidate the
key results from these sections.
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3.1 The Stage Game
The simplest version of the model assumes that players’ preferences over
policy are quadratic and that players consider the impacts of their ac-
tions for a single period of play at a time. This last assumption may
hold if players believe that the game is only to be played once or if
players have very high discount rates.

The two assumptions are captured by the simple utility function
V it = ¡(jyt ¡ xij)2 ¡ jvit j2

¼i
.

The timing of the game is as follows. At the beginning of period t,
the status quo is …xed at yt. Players in M then optimally choose a set
of vectors fvitgi2M. At the end of the period, the new policy option is
given by yt = yt¡1 +

P
i2M

vit and players enjoy utility V it (yt; v
i
t).

I solve the problem for jMj players in n dimensions. Note …rst that
each player chooses an n-dimensional vector vi¤t such that:

vi¤t = argmax
vit

f¡
nX

j=1

(xij¡(yt¡1;j+v1t;j+: : :+vit;j+: : :+vjMj
t;j ))

2¡jvitj2
¼i

g (1)

For player i the …rst order conditions for an arbitrary component of
vi¤, say vi¤t;j is:

2(xij ¡ yt¡1;j ¡ v1t;j ¡ v2t;j : : : ¡ vi¤t;j : : :¡ vjMj
t;j )¡

2vi¤t;j
¼i

= 0 (2)

or

vi¤t;j =
¼i

¼i + 1
xij ¡ ¼i

¼i + 1

0
@yt¡1;j +

X

k2M=fig
vkt;j

1
A (3)

And similar conditions exist for all other players i 2 M and dimen-
sions j 2 f1; 2 : : : ng. In equilibrium, all equations are satis…ed by the
set fvit;j = vi¤t;j ji 2 M, j 2 f1; 2 : : : ngg. We have then for each di-
mension, jMj independent equations in jMj unknowns. Hence, we can
solve for vi¤t for all i on any dimension j.

Solving the equations in groups of jMj for an arbitrary dimension,
j, we get for each i:

vi¤(yt¡1) =

2
4xi ¡

yt¡1 +
P
k2M

¼kxk

1 +
P
k2M

¼k

3
5¼i (4)
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The policy that results from these actions is given by

yt = yt¡1+
X

h2M

2
4xh ¡

yt¡1 +
P
k2M

¼kxk

1 +
P
k2M

¼k

3
5¼h = 1

1 +
P
k2M

¼k
(yt¡1+

X

k2M
¼kxk)

(5)
I now show that an equilibrium point exists and is unique. More

constructively, I show that the value taken by the equilibrium point is
the weighted average of the ideal points of all players, where the weights
are given by the strengths of each player. Strong players will normally
…nd the equilibrium close to their ideals and weak players will …nd it far
away. The weighted average is of course internal to the Pareto set; 4

it is also the point that maximizes a weighted utilitarian social welfare
function where weights are given by the strengths of the players.

Proposition 1 A status quo policy in the stage game with quadratic
utility and costs is an equilibrium point if and only if it is the weighted
average of the ideals of the players in M where the weights are given by
the relative strengths of the players. That is y is an equilibrium point if

and only if y =

P
i2M

¼ixi

P
i2M

¼i
:

Proof. A steady state in the basic model is a status quo policy y¤

that induces responses fvi¤(y¤)gi2M such that
P
i2M

vi¤(y¤) = 0. This

value may be easily calculated by summing Equation 3 over all i in M
and solving for

P
i2M

vi¤j (y
¤). This gives:

X

i2M
vi¤j (y

¤) =

P
i2M

¼i

1 +
P
i2M

¼i
(xij ¡ y¤j ) (6)

which vanishes if and only if
P
i2M

¼i(xij ¡ y¤j ) = 0 or (in vector form):

y¤ =

P
i2M

¼ixi

P
i2M

¼i
(7)

4Since the weighted average is a convex combination of ideals and the Pareto set
(given our assumptions on the subutility function) is the set of all convex combina-
tions of ideals.
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We now have the information we need to enquire into the level of
force expended in equilibrium. Using Equation 4 we have that the force
applied by each player along each dimension at the equilibrium point is
given by:

vi¤j =

2
6664x

i
j ¡

P
k2M

¼kxkj
P
k2M

¼k
+

P
k2M

¼kxkj

1 +
P
k2M

¼k

3
7775 ¼

i (8)

This simpli…es easily to:

vi¤ =
£
xi ¡ y¤

¤
¼i (9)

The interpretation of Equation 9 is that in equilibrium, players’
strategies are “truthful” in the sense that they try to pull policy directly
towards their ideal. If it so happens for example that the equilibrium
is the ideal of some player, then that player will not have to expend any
energy to maintain the equilibrium.5 If policy is in equilibrium then,
the equilibrium strategies are preference revealing.

The costs born by players in equilibrium is then:

ci(vi¤) = jxi ¡ y¤j2¼i (10)

The following proposition uses Equation 10 to show that the average
deadweight losses (or the average amount of violence employed) result-
ing from optimal actions taken when policy is at the equilibrium point
are increasing in the average strength of the players (that is, the cheaper
action is on average, the more will be spent in the aggregate). Further-
more, the average (and total deadweight losses) are directly proportional
to the strength of the players.

Proposition 2 The total cost paid by players when policy is at the equi-
librium point is directly proportional to the degree of (weighted) disper-
sion of the group. Furthermore it is increasing with proportionate in-
creases in the strength of the players.

Proof. Summing Equation 10 over the individuals we …nd

X

i2M
ci(vi¤) =

X

i2M

nX

j=1

¼i

2
4xij ¡

P
i2M

¼ixi

P
i2M

¼i

3
5
2

= ½(Mj¼)
X

i2M
¼i (11)

5This could be the happy situation of a weak player centered between two strong
players.
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This establishes the …rst part of the proposition. The second part
follows from the fact that ½(Aj¼) is homogenous of degree 0 in ¼ and
so, for some scalar ®, @½(Mj®¼)

P
i2M

®¼i=@® =
P
i2M

¼i½(Mj¼).

I now turn to consider the comparative statics of e¤ort as a func-
tion of the strength of individual players. I ask whether the amount of
violence employed and the total costs incurred by an individual player
in equilibrium are increasing or decreasing in the strength of a player.
That is, if violence is cheaper will individuals purchase more of it? And
will they spend larger or smaller shares of their income on it? Results
of the inquiry are summarized in the next proposition.

Proposition 3 In equilibrium, stronger players employ a greater amount
of force than weaker players, ceteris paribus. The total amount that a
player pays in equilibrium is decreasing in the cost of the action if and
only if a player is a dominant player.

Proof. From Equation 7 and Equation 9 we have that

@vi¤j
@¼i

= (xij ¡ y¤j )

P
k2M

¼k ¡ ¼i
P
k2M

¼k
(12)

@jvi¤j2
@¼i

= 2
nX

j=1

¼i(xij ¡ y¤j )2
P
k2M

¼k ¡ ¼i
P
k2M

¼k
= 2¼i

P
k2M

¼k ¡ ¼i
P
k2M

¼k
jxi ¡ y¤j2 > 0

(13)

Equation 12 states that if, xij > y
¤
j then

@vi¤j
@¼i

> 0, that is if a player
stands to one side of the equilibrium point, then the stronger she is, the
more she shall pull to that side. Equation 13 con…rms that the (square
of) the magnitude of force applied increases with strength (and hence
the magnitude also increases with strength). This establishes the …rst
part of the proposition. For the second part of the proposition, note
that:

@ jv
i¤j2
¼i

@¼i
= @

2
64jxi ¡

P
k2M=fig

¼kxk + ¼ixi

P
k2M=fig

¼k + ¼i
j2¼i

3
75 =@¼i =

P
k2M

¼k ¡ 2¼i
P
k2M

¼k
jxi¡y¤j2

(14)
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The interpretation of Equation 14 is that the amount paid in e¤ort
by a player at the status quo is increasing in her strength if and only
if ¼i < 1

2

P
k2M

¼k. That is, the gross amount that the player pays is

decreasing in the cost of the action if and only if a player is a dominant
player. For non-dominant players, the cheaper the action (the stronger
they are) the more they pay, ceteris paribus.

The second part of the proposition implies that in 2 player games
(where there is typically one dominant player), the weak player su¤ers a
double curse: not only is the equilibrium policy far away from her ideal,
but the costs she incurs to keep it there are increasing in her weakness.
Indeed, in this case, equilibrium requires that both players expend the
same amount of force in opposite directions. For the weaker player then,
not only is the status quo further away but she also has to pay more to
maintain it than does the dominant player.

We can interpret Equation 12 as stating that players have a down-
ward sloping demand curve for violence. The interpretation is con…rmed
by Equation 13 which states that the cheaper violence is, the more that
is employed in terms of magnitude.6

I now turn to consider how the amount of e¤ort applied in equilibrium
is a¤ected by the preferences of a player. The next proposition states
that ceteris paribus, players that are “extremist” in preference space are
also “extremist” in e¤ort. Players far from the center of a group expend
more e¤ort to try to change the equilibrium than centrist players.

Proposition 4 In equilibrium, players far from the center of the group
pay more than players closer to the center of the group, ceteris paribus.

Proof. May be read for any two players directly from Equation 10.
Furthermore, Di¤erentiating Equation 10 with respect to xi gives, on

each dimension: @

"
jxi ¡

P
i2M

¼ixi

P
i2M

¼i
j2¼i

#
=@xi =

"
2¼i

P
i2M

¼i¡¼i
P
i2M

¼i
(xij ¡ y¤j )

#

j=1;2;:::n

.

Hence if on any dimension xij > (<)y
¤
j then increasing xij increases (de-

creases) the costs paid in equilibrium.

Finally, for comparison with more cooperative situations, it is useful
to note that the sum of the utilities of all players in equilibrium under
atomistic play in equilibrium in the stage game is given by:

6Strictly speaking, these statements refer to the “power” interpretation of ¼ rather
than the price interpretation. To get expressions for the price interpretation we need
to di¤erentiate with respect to (1=¼), or, equivalently, to multiply these expressions
by ¡(1=¼)2:
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X

i2M
V i = ¡

X

i2M

2
4xij ¡

P
i2M

¼ixi

P
i2M

¼i

3
5
2

¡
X

i2M
¼i½(Mj¼) (15)

If all players have equal weights, this reduces to
P
i2M

V i = ¡(1 +
¼)jMj½(M).

3.2 The Repeated Game with Myopic Players
So far we have considered the actions taken by agents that attempt to
alter policy in a single time period. From Equation 5 however we can
see that the process we are considering is described by a linear di¤erence
equation. Given some initial policy, y0, each dimension has a solution
in each period, s, given by:

ys;j =

P
k2M

¼kxkj
P
k2M

¼k
+

1�
1 +

P
k2M

¼k
¸s

2
4y0;j ¡

P
k2M

¼kxkj
P
k2M

¼k

3
5 (16)

This di¤erence equation tells us all we need to know about the sys-
tem, it allows us to predict policy at any point in time given some initial
starting point. It also tells us that over time policy converges in a straight

line to the steady state, given by y1 = y¤ =

P
k2M

¼kxk

P
k2M

¼k
. Furthermore, the

rate of convergence is proportional to the distance of the policy from the
steady state, where the factor of proportionality depends on the total
absolute costs to all players of forcing a change. Summing over vi¤t , we
…nd:

X

i2M
vi¤t = (y

¤ ¡ yt¡1)

P
i2M

¼i

P
i2M

¼i + 1
(17)

If for example
P
k2M

¼k = 1, then the process makes it half the way to

equilibrium in every move. Note in particular that for a given steady
state, the rate of convergence is independent of the ideal points of the
players.
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3.3 The Repeated Game with Sophisticated Play-
ers

In the last section I assumed that actors take actions to maximize their
instantaneous gains, without regard for how their actions will a¤ect fu-
ture rounds of play. In this section I consider the possibility that 1)
players do care about the future and 2) they are sophisticated in the
sense that they take into account the e¤ects of their actions today on
their own actions and other players actions in future rounds of play.

Considering …rst the case where all players have the same strength,
we …nd that under sophisticated play in a game of arbitrary length,
the equilibrium is still given by the simple average of the ideals of the
players and the path to equilibrium is still linear. However, the rate at
which policy converges to equilibrium changes. I formalize these claims
in the following proposition. The lemmas supporting the proof of this
proposition are straightforward but tedious to prove. Lemma 1 is stated
below but its proof and the supporting Lemma is left to the Appendix.

Lemma 1. If a game with quadratic subutility functions and costs
is iterated T times, where T is arbitrarily large, and all players are of
equal strength, then the sum of all players’ optimal actions,

P
i2M

vi¤t , in

each period of play, t = 1; 2; :::; T , is given by a linear equation of the
form:

P
i2M

vi¤t = (¹x¡ yt¡1)kt, where 0 < kt < 1.

Proof. See Appendix.

Proposition 5 The equilibrium point in a game iterated T times, T ar-
bitrarily large, where all players are sophisticated, are of equal strength,
and have quadratic subutility functions and costs, is equivalent to the my-
opic equilibrium point: y¤ = ¹x. Furthermore, policy converges linearly
to ¹x over time.

Proof. From Lemma 1 we have that in all periods
P
i2M

vi¤t = (¹x ¡
yt¡1)kt. But then if in any period t, yt = ¹x then yt+1 will be given by
yt+1 = yt +

P
i2M

vi¤t+1 = yt + (yt ¡ yt)kt+1 = yt = ¹x: And similarly for any

ys with t < s � T . This establishes the …rst part of the proposition.
If in some time t, yt 6= ¹x then we have yt+1 = yt + (¹x ¡ yt)kt+1 with
(again from Lemma 1) 0 < kt < 1. But this implies that yt+1 is a convex
combination of ¹x and yt and so yt,yt+1 and ¹x are collinear with yt+1
between yt and ¹x. Similarly, all ys with t > s ¸ T are collinear with ys
between ys¡1 and ¹x.

14



We have seen then that introducing sophisticated players does not
greatly alter play in situations where all players are of equal strength.
Play is however greatly a¤ected when players are sophisticated and are
not all of equal strength. In particular the myopic equilibrium point
(the weighted average of the players’ ideals) is not an equilibrium point
in the game, and, moreover, there generally is no equilibrium point in
this game.

Proposition 6 A game iterated T times, T arbitrarily large, where all
players are sophisticated, have heterogenous, generally distributed ideals,
are not all of equal strength, and have quadratic subutility functions and
costs, has no equilibrium point in any but the last period

Proof. It is su¢cient to show that with sophisticated players there
is no point yT¡2 such that with players playing equilibrium strategies
yT¡2 = yT¡1 = yT . Since we know from our study of the stage game that

yT¡1 = yT only if yT¡1 = y¤ ´
P
k2M

¼kxk

P
k2M

¼k
, the only way that we could have

yT¡2 = yT¡1 = yT is that, given yT¡2 =

P
k2M

¼kxk

P
k2M

¼k
,
mP
k=1

vij;T¡1 = 0 Hence we

now consider
mP
k=1

vij;T¡1. First de…ne ¦ =
P
k2M

¼k and �¦ =
P
k2M

¼k¼k. In

time T¡1, forward-looking individuals choose a vector viT¡1 to maximize

V iT¡1 = ¡(jxi¡yT¡2¡
mP
k=1

vkT¡1j2)¡
jviT¡1j2
¼i

¡±(jxi¡yT j2)¡± jviT j2
¼i

. Using

backwards induction and Equation 5 they substitute yT¡1+¦y¤

1+¦
for yT ,

and
h
xi ¡ yT¡1+¦y¤

1+¦

i
¼i for viT . Finally, players substitute yT¡2+

mP
k=1

vkT¡1

for yT¡1. The …rst order conditions for this problem yield (for each
dimension, j):

vij;T¡1 = ¼
i(xij¡yj;T¡2¡

P
k2M

vkj;T¡1)+
±¼i(1+¼i)
1+¦

(xij¡
yT¡2+

mP
k=1

vkT¡1¡
P
k2M

¼kxk

1+¦
)

Summing this condition over the players and solving for
P
k2M

vkj;T¡1

we …nd:
mP
k=1

vij;T¡1 =
¦(1+¦)2+±¦(1¡¦̧)
(1+¦)3+±(¦+¦̧)

y¤+ ±(1+¦)¦̧

(1+¦)3+±(¦+¦̧)

P
k2M

¼k¼kxk

P
k2M

¼k¼k
¡¦(1+¦)2+±(¦+¦̧)

(1+¦)3+±(¦+¦̧)
yT¡2

Now assuming yT¡2 =

P
k2M

¼kxk

P
k2M

¼k
we have

mP
k=1

vij;T¡1 =
±¦̧(1+¦)

(1+¦)3+±(¦+¦̧)
(

P
k2M

¼k¼kxk

P
k2M

¼k¼k
¡

y¤) and hence
mP
k=1

vij;T¡2 = 0 if and only if

P
k2M

¼k¼kxk

P
k2M

¼k¼k
=

P
k2M

¼kxk

P
k2M

¼k
. This
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condition will be satis…ed for generally distributed ideals if and only if
¼k = ¼ for all k 2 M. [Note that this condition may be satis…ed if xk = x
for all k 2 M and for some pathological joint distributions of ¼k and xk

where x1 =
x2(¼2

P
k2M

(¼k)2¡(¼2)2 P
k2M

¼k)+:::+xjMj(¼jMj P
k2M

(¼k)2¡(¼jMj)2
P
k2M

¼k)

(¼1)2
P
k2M

¼k¡¼1 P
k2M

(¼k)2
;

which will not hold for generally distributed ideals)]

Generally then with sophisticated players with asymmetric strengths
we will not observe an equilibrium point. What then may we expect
to happen in games with asymmetric players? As can be seen from
the proof of the preceding Proposition, we may expect policy to tend
towards the ideals of the strongest players. From the proof we may see

for example that
mP
k=1

vij;T¡1 = 0 if and only if yT¡2 =
¦(1+¦)2+±¦(1¡¦̧)
¦(1+¦)2+±(¦+¦̧)

y¤+

±(1+¦)¦̧

¦(1+¦)2+±(¦+¦̧)

P
k2M

¼k¼kxk

P
k2M

¼k¼k
, that is if yT¡2 lies on the line segment between

y¤ and a second weighted average of xk, k 2 M, one that places greater
weight on the ideals of stronger players (players that have a weight ¼i >P
k2M

¼k¼k=
P
k2M

¼k). If indeed yT¡2 = y¤, then the stronger players pull

the policy towards

P
k2M

¼k¼kxk

P
k2M

¼k¼k
in time T ¡ 1, only for it to return again

towards y¤ in time T . In a similar manner we can show that in time
T ¡ 2 strong players will act to pull policy towards a point given byP
k2M

¼k¼k¼kxk

P
k2M

¼k¼k¼k
, that is, a point that weights stronger players more heavily

still.7

3.4 Generalization of the Atomistic Game to a Broader
Class of Utility Functions

The results that have been produced so far have been derived by assum-
ing a restrictive class of subutility functions: ones that are quadratic
in the distance of policy from the ideal point. It is reasonable to ask
how robust are these results to the particular functional form that has
been chosen. In this section I provide evidence that the choice of the
subutility function is not critical for these results. Here I only consider
the location of the equilibrium point and I continue to maintain the as-
sumption of quadratic costs; however I show that the central result that

7While I do not provide a solution for in…nite horizon games, on the basis of the
above discussion I conjecture that an equilibrium point will exists in these games and
that it will lie closer to the ideal points of strong players than the weighted average.
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the ine¢cient policy choice is given by the weighted utilitarian optimum
turns out to be true for a very wide class of subutility functions.

Proposition 7 If the subutility utility functions over a compact subset
of Rn are smooth and concave and costs are quadratic in magnitude,
then every equilibrium point is a weighted utilitarian welfare maximizing
policy, where the weights are given by the relative strengths of the players.

Proof. Assume that the status quo is located at some equilibrium
point y. The conditions on u(:) imply that for each player, i, the
optimum vector of force applied by i, vi¤, given y and the forces applied
by all other players is implicitly de…ned by the …rst order condition for
utility maximization: @ui(y+v1+v2:::+vi¤+:::+vm)

@vi
= 1

¼i
vi¤. Summing such

…rst order conditions over all jMj players, we have that in equilibriumP
i2M

¼i@ui(y +
P
i2M

vi¤)=@vi ¡ 2
P
i2M

vi¤ = 0. By de…nition, however, if

y is an equilibrium point, then, at y,
P
i2M

vi¤ = 0. Noting further that

@ui(y+v1¤+v2¤:::+vi+:::+vm¤)
@vi

= @ui(y+v1¤+v2¤:::+vi¤+:::+vm¤)
@y

, we have that if y is

an equilibrium point, then
P
i2M

¼i @u
i(y)
@y

= 0. But this is precisely the

…rst order condition for maximizing the weighted utilitarian objective
function

P
i2M

¼iui(y).

We have established then that for a very broad class of utility func-
tions, a point is stable in the stage game only if it is the utilitarian
welfare maximizing point. I now show for a more constrained class of
utility functions that if, in the stage game, a point is a utilitarian welfare
maximizing point, that it is a stable point.

Proposition 8 If the subutility utility functions over a compact subset
of Rn are smooth and concave and have the property that @2ui(y)

@y@yT
is neg-

ative de…nite for all i, and if costs are quadratic in magnitude, then a
point y is an equilibrium point if and only if it is a utilitarian optimum.

Proof. The “only if” part has already been established and so we
turn to the “if” part. For notational convenience, let us de…ne ¢n£1 ´P
i2M

vi¤(y). Also note that @ui(y+¢)
@vi

= @ui(y+¢)
@¢

. We are given from the

…rst order conditions of utility maximization, that ¢ =
P
i2M

¼i @u
i(y+¢)
@¢

and from the condition that y is a utilitarian maximum that
P
i2M

¼i @u
i(y)
@¢

=
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0. Note …rst that since
P
i2M

¼i @u
i(y)
@¢

= 0,¢ = 0 satis…es¢ =
P
i2M

¼i @u
i(y+¢)
@¢

.

If ¢ = 0 is the only value of ¢ that satis…es ¢ =
P
i2M

¼i @u
i(y+¢)
@¢

then

we have that ¢ = 0, necessarily, and hence that y is stable and we are
done. I now show that given our assumptions on utility there is a unique
solution to ¢ =

P
i2M

¼i @u
i(y+¢)
@¢

. De…ne f(¢jy) = P
i2M

¼i @u
i(y+¢)
@¢

¡¢ and

note that f(¢jy) is smooth and that its Jacobian matrix, @f (¢jy)
@¢

, is
negative de…nite. The Gale-Nikaido univalence theorem then guaran-
tees that f (¢jy) is injective and hence that there is a unique solution
to f(¢jy) = 0. Such a solution however is a unique …xed point forP
i2M

¼i @u
i(y+¢)
@¢

.

Example 9 Quadratic utility with salience weights and possible
non-separability across dimensions. Assume utility takes the form
ui(y) = (xi ¡ y)TAi(xi ¡ y) where Ai is any player-speci…c symmetric
negative de…nite, possibly non-diagonal, n£ n weighting matrix. Again,
de…ne ¢n£1 ´ P

i2M
vi¤(y). Since @[(xi¡y¡¢)TAi(xi¡y¡¢)]

@vi
= ¡2Ai(xi ¡

y ¡ ¢) we have from the conditions for individual maximization that
¢ = ¡2 P

i2M
¼iAi(xi ¡ y ¡ ¢). Hence ¢ is given uniquely by ¢ =

[(In£n ¡ 2
P
i2M

¼iAi)]¡1
P
i2M

¼iAi(xi ¡ y).8 It follows then that if y is

a utilitarian optimum, then
P
i2M

¼iAi(xi ¡ y) = 0 and hence, ¢ = 0.

Similarly, if ¢ = 0 then
P
i2M

¼iAi(xi¡y) = 0 and hence y is a utilitarian

optimum.

3.5 Summary of Results from the Atomistic Game
and an Example of a Game with Two Players

I now sum up the key results from this section informally. I follow this
with an example of a game with two players in two dimensions.

8To check that the matrix (I ¡ 2
P

i2M
¼iAi) is invertible note that it is a linear

combination of jMj+1 poisitive de…nite matrices and hence is itself positive de…nite
and, therefore, (since a necessary condition for positive de…niteness for a matrix is
that its determinant be positive) non-singular.
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Summary of Results

Equilibrium. The equilibrium stable point is unique and is given by
a weighted average of the ideal points of the players, where the weights
are determined by the relative strengths of the players.

Path to Equilibrium. The path to equilibrium is linear and in the
myopic game satis…es a …rst order linear di¤erence equation.

Path (In)Dependence. The equilibrium outcome (unlike the path
to equilibrium) is independent of the starting position.

(In)E¢ciency. Unless all players share the same ideal point and so
½(Mj¼) = 0, the equilibrium strategies will be “socially wasteful,” in
the sense that costly energy will be spent without any gains in welfare.
The waste is directly proportional to the dispersion of the group and
increasing in the average level of strength of members of the group.

Extremist Activism. Players whose ideals are “extreme” relative
to the rest of their group will apply more force to attempt to change the
equilibrium, in equilibrium, than more centrist players.

Dominant Players. Dominant players enjoy an equilibrium closer
to their ideals than weaker players, ceteris paribus, and pay less than
weaker players, ceteris paribus to maintain the equilibrium.

Truthfulness. In equilibrium, players’ strategies will be “truthful”
in the sense that the forces they apply point directly to their true ideals
from the equilibrium point (or, if the equilibrium point is the ideal of
some player, then that player will apply a vector of length zero in equi-
librium).

Sophisticated Players. If players are sophisticated then, in gen-
eral, the equilibrium point of the repeated game is the same as that of
the stage game (or the repeated game with myopic players) if and only
if all players are of equal strength. If players are of divergent strength
then there is in general no equilibrium point for a game of length T > 2.

Equivalence. The y¤ that is picked out as a con‡ictual and costly
equilibrium of the non-cooperative game is also the weighted utilitarian
optimum where weights are given by the strength of players. It also
lies inside the Pareto Set and so is in the core for consensus games.
Furthermore this feature holds for all smooth concave subutility func-
tions. Less restrictively, if either all players are of equal strength, or the
“strengths” translate directly into votes, y¤ also lies inside the core for a
class of 64%-majority rule games.9 Of course none of these cooperative
solutions involve the ine¢ciencies needed here to sustain y¤.

9Andrew Caplin and Barry Nalebu¤, “Aggregation and Social Choice: A Mean
Voter Theorem” Econometrica, 59(1):1–23.1991. Although see also: Barry K. Ma ,
Je¤rey H. Weiss, “On the Invariance of a Mean Voter Theorem”, Journal of Economic
Theory, Vol. 66, 1995, pp. 264-274. pp. 264-274
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Example

Assume that two players occupy positions x1 = (0; 0) and x2 = (0; 3),
that the status quo is located at yt=0 = (1; 1) and that the players are
symmetric in strength: ¼1 = ¼2 = 1: Under these assumptions v1¤j;t=1 =
[2x1j¡yj¡x2j ]

3
and v2¤j;t=1 =

[2x2j¡yj¡x1j ]
3

. Hence we have v1¤t=1 =
¡
¡1
3
;¡4

3

¢
and

v2¤t=1 =
¡
¡1
3
;+5

3

¢
. And the actual displacement is given by: v1t=1+v

2
t=1 =¡

¡2
3
; 1
3

¢
. Hence the new status quo is: yt=1 = yt=0+v1t=1+v

2
t=1 =

¡
1
3
; 4
3

¢
.

As we can see from the diagram below, this is an extremely ine¢cient
way to get to (1

3
, 4
3
) from (1; 1). We may repeat the process again at

time t = 2 (and with yt=1 as the status quo). The equilibrium force
levels are given then by v1¤t=2 =

¡
¡1
9
;¡13

9

¢
and v2¤t=2 =

¡
¡1
9
;+14

9

¢
. The

actual displacement is then given by v1t=2 + v
2
t=2 =

¡
¡2
9
;+1

9

¢
and so the

new status quo is yt=2 = yt=1 + v
1
t=2 + v

2
t=2 =

¡
1
9
; 13
9

¢
. In the limit

v1t=1 + v
2
t=1 = 0 and yt=1 = y¤ =

¡
0; 3

2

¢
:

The forces applied and the
move from yt=0 to yt=1

The forces applied and the
move from yt=1 to yt=2

The (entirely wasteful) forces
applied in equilibrium, yt=∞

Note: In the …gure, the status quo is given by a white dot. The ideals of two
players, “red” and “green” are also marked with dots at (0,0) and (0,3). The forces

applied at each stage in the game by the players are given by red and green arrows,
and the resolution of the forces is marked.

Discussion. The example illustrates a number of interesting features
about this process. Consistent with the general results from this section
we …nd:

The limit of the process results in a stable policy (Equilibrium). At
the equilibrium point, there are positive levels of expenditure. In the
limit players keep exerting e¤ort but their e¤orts to change policy o¤set
each other exactly (Ine¢ciency). The path to equilibrium is linear
and steps become shorter and shorter (Path to Equilibrium). Also,
the limit point is a plausible bargaining outcome. It is the utilitarian
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optimum and the Nash bargaining solution to a game where the two
players have the same attitudes to the status quo. Furthermore with
transferable utility this is the general Coasian solution, since the Pareto
optimal policy choice is unique (Equivalence).

Finally, the example is also instructive insofar as it illustrates how
complex collective action problems can be easily accommodated by this
framework. In this example players agree on the ideal policy along the
…rst dimension but disagree about policy on the second dimension. They
are both unhappy with policy along both dimensions. Their dilemma
along the …rst dimension is a collective action problem: they agree on
what actions should be taken but would each rather that the other player
takes the action. In taking their actions they “underprovide” in the
sense that they fail to take into account the positive externalities of
their action for other players. Here the failure to engage in cooperative
agreement means that e¤ort is underprovided on the path to equilibrium.
Along the second dimension however there is disagreement over ideals.
Here the players “overprovide” insofar as they fail to internalize the
negative externalities resulting from their actions on other players. In
this case, particularly in equilibrium, e¤ort is overprovided relative to the
optimum. We see in the example that when the status quo is far away
from the contract curve, a large share of the energy expended is actually
used to move the policy towards the status quo; a small share is used
trying to cancel out “robbing” e¤ects by the other player. In contrast,
when the status quo is very close to the contract curve, almost all of
the energy is used to “cancel” the e¤orts made by the other player and
almost none is used in making joint gains (there are few to be made!).
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4 Exogenous Coalitional Structures

I am a member of the Tutsi tribe by my mother, my father
and my most remote ancestors [...] I am not sorry for having
struggled alongside the Hutu. It is too late to be sorry. But if
I had to do it again I would not do it. I would do everything
except …ght on behalf of a tribe other than mine, or to appear
to be …ghting on the side of any other tribe.

- Boniface Kiraranganiya, La vérité sur le Burundi (in
Lemarchand 1994 p58)

I now turn to the study of coalitions to see how the ability of sub-
groups to coordinate their actions a¤ects outcomes. While in general
we do not expect it to be an easy matter for any heterogenous group
to produce a joint strategy I simplify matters in this section by assum-
ing that players in a coalition, Ck, can negotiate e¢ciently in that the
strategies that they choose will be (Pareto) e¢cient in the sense that no
other strategy would increase the welfare of any player(s) in the coalition
without reducing the welfare of some other player(s) in the coalition. In
many instances I also further simplify by assuming Transferable Utility
(TU), that is, that players within a group can make side payments to
each other and that these payments are valued equally by each member
and increase the utility of any player linearly. At this stage I make no
claims about the mechanisms used by groups to choose their outcome
or regarding the relative bargaining strengths of players within a group.
Hence I make no claims regarding how side payments are made among
members of a group but only regarding the aggregate size of the pie for
a group, a quantity determined in a TU game, purely by the choice of
policy.

I begin by showing that coalitions can be represented by …ctitious
players with ideal points related to the ideal point of the individual
members of the coalition and a strength related to the strength of the
individual members of the coalition. This is established in the …rst
subsection, doing so allows us quickly to extend results from our study
of atomistic structures to structures with exogenous coalitions. I then
turn to study the properties of equilibrium and the distribution of labor
among members of a coalition. The grand coalitional structure is a
special case of the structures considered here and so I use the results
generated to compare positive and normative properties of the grand
coalitional game with the atomistic game. Finally I relate coalitional
structures to aggregate levels of violence, In doing so I link the theoretical
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work undertaken here with empirical work that has been done related
the ethnic structuration of a country with aggregate levels of violence.
The section ends with a summary of …ndings and an example illustrating
some of the results from the model.

4.1 Little Leviathans: Representation of Coalitions
with Fictitious Actors

Members of a coalition choose a set of actions fvigi2Ck that each member
of the coalition takes in order to maximize some objective function of
the coalition. In a game with transferable utility and no budget con-
straints, this objective function will be the summation of the utility of
the members of the coalition. That is, the coalition will have a utili-
tarian objective function. In a game with non-transferable utility, the
coalition may be concerned about the distributive e¤ects of their actions
and use some other objective function. Here I concentrate on the trans-
ferable utility case and derive other preliminary results only for the class
of ¸-weighted utilitarian objective functions.10

Assume for some arbitrary weighting vector ¸, in time t, that each
coalition Ck chooses a set of vectors fv1t ; v2t ::::vjC

kj
t g to maximize the

¸¡weighted sum of the utility of the members of the coalition:

iX

i2Ck
¸iuit = ¡

X

i2Ck
¸i(jxi ¡ yt¡1 ¡

X

h2Ck
vht ¡

X

h62Ck
vht j2)¡

X

i2Ck

¸i

¼i
jvitj2

The …rst order condition for this problem for arbitrary dimension j
and force enacted by player i in Ck is given by

vij;t =
¼i

¸i

2
4X

h2Ck
¸h(xhj ¡ yj;t¡1 ¡

X

h2Ck
vhj;t ¡

X

h62Ck
vhj;t)

3
5 (18)

Summing …rst order conditions from Equation 18 over the members
of Ck and solving for

P
i2Ck

vij;t we may de…ne:

vC
k

t ´
X

i2Ck
vit =

P
i2Ck

¼i

¸i

1 +
P
i2Ck

¼i

¸i

P
i2Ck

¸i

X

i2Ck
¸i(xi ¡ yt¡1 ¡

X

i 62Ck
vit¡1) (19)

10These functions may be used for studying games with non-transferable if we can
assume that games without transferable utility may be reperesentable as games with
transferable ¸-weighted utility. See Myerson 1991.
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“vC
k
” then fully describes the joint actions taken by a group, as if

it were a unitary actor. Indeed it turns out that we can fully represent
the actions a coalition by the actions of a …ctitious player, Ck, with

strength: ¼C
k ´ P

i2Ck
¼i

¸i

P
i2Ck

¸i and ideal point xC
k ´

P
k2Ck

¸ixi

P
i2Ck

¸i
. To check

this, note that an individual player with this ideal and strength acting
to satisfy an individual’s …rst order condition (given in Equation 3) will
choose

vC
k

j;T¡1 =

P
i2Ck

¼i

¸i

P
i2Ck

¸i

1 +
P
i2Ck

¼i

¸i

P
i2Ck

¸i

P
i2Ck

¸ixij
P
i2Ck

¸i
¡

P
i2Ck

¼i

¸i

P
i2Ck

¸i

1 +
P
i2Ck

¼i

¸i

P
i2Ck

¸i
(yj;T¡1+

X

i 62Ck
vij;T¡1)

which is equivalent to the action taken by a coalition as reported in
Equation 19.

Hence the coalition acts like an individual and so we may use the
results from our study of atomistic structures in this section also. If
for example, for all i, ¸i = ¼i then the coalition acts like a player with

strength of jCkj P
i2Ck

¼i and ideal

P
i2Ck

¼ixi

P
i2Ck

¼i
; if instead, for all i, ¸i=¸ then

the coalition acts like a player with strength of jCkj P
i2Ck

¼i and ideal ¹x:

Furthermore the …ctitious player, Ck, not only acts like an individual,
but he is “representative” of the members of the coalition from which he
derives in the following ways. The costs he incurs are exactly the average
of the costs of the individual members of the group; and his utility is the
average utility of the members of the group, plus a bonus that is given by
the degree of dispersion of the group. If all members of a coalition have
the same ideals, then the utility of the …ctitious player is exactly that of
the individual members of the group. If the group however is dispersed,
then the …ctitious player does better than the individual members of the
group. These claims are formalized in the next proposition.

Proposition 10 The costs incurred by the …ctitious player representing

a coalition Ck, jvCkT¡1j2

¼Ck
equal the average costs incurred by the individual

players in the coalition. That is
jvCkT¡1j2

¼Ck
=

P
i2Ck

jviT¡1j2
¼i

=jCkj. Furthermore,

the policy utility of the …ctitious player ¡j(xCk ¡ y)j2 is given by the
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average policy utility of the members of the coalition,
P
i2Ck

jxi¡yj2
jCkj plus the

dispersion of the players; that is: ¡jxCk ¡ yj2 = ¡ P
i2Ck

jxi¡yj2
jCkj + ½(Ck).

Proof. Since from Equation 10, each vij;T¡1 , i 2 Ck may be written
vij;T¡1 = ¼

iµj for some constant µj, it follows that
P
i2Ck

vij;T¡1 = µj
P
i2Ck

¼i

and so vij;T¡1 = ¼i

P
i2Ck

vi
jT¡1

P
i2Ck

¼i
and

jviT¡1j2
¼i

=
¼ij P

i2Ck
viT¡1j2

"
P
i2Ck

¼i

#2 . It follows im-

mediately that
P
i2Ck

jviT¡1j2
¼i

= j P
i2Ck

viT¡1j2
P
i ¼

i

"
P
i2Ck

¼i

#2 = j P
i2Ck

viT¡1j2 1P
i2Ck

¼i
=

jCkj jv
Ck
T¡1j2

¼Ck
.

For the second part of the proposition we write
(xC

k

j ¡ yj)2 =
P
i2Ck
(y2j ¡ 2yjxC

k

j + (xC
k

j )
2)=jCkj = P

i2Ck
(y2j ¡ 2yjxC

k

j ¡

(xC
k

j )
2 + 2xC

k2
j )=jCkj

making use of the fact that
P
i2Ck

µxij=jCkj = µxC
k

j =
P
i2C
µxC

k

j =jCkj we

then have that
(xC

k

j ¡ yj)2 =
P
i2Ck
(y2j ¡ 2yjxij ¡ (xCkj )2 + 2xC

k

j x
i
j)=jCj

=
P
i2Ck
(xij ¡ yj)2=jCkj ¡ P

i2Ck
(xij ¡ xCkj )2=jCkj

Hence
P

j(x
Ck
j ¡yj)2 =

P
i2Ck

P
j(x

Ck
j ¡yj)2=jCkj¡

P
j

P
i2Ck
(xij¡xC

k

j )
2=jCkj

and hence ¡jxCk ¡ yj2 = ¡ P
i2Ck

jxi ¡ yj2=jCkj+ ½(Ck).

This last proposition will allow us to extend our results from atom-
istic structures to more complex structures. For normative comparisons
it will also be useful to be able to write an expression for the value of
a coalition. This is given by the joint utility of the set of players in a

coalition: V C
k
= ¡ P

i2C
jxi ¡ yj2¡ P

i2C

jviT¡1j2
¼i

. Using the values derived

above, this can be represented simply as:

V C
k

= jCkj
"
¡jxCk ¡ yj2 ¡ jvCkT¡1j2

¼f
¡ ½(Ck)

#
(20)
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4.2 Characterizing Equilibrium with Coalitions
We now use the fact that we can represent coalitions with single …ctitious
players in order to characterize equilibrium with coalitions. To do so we
shall discuss the degree of dispersion of a coalitional structure ½(C),
which we interpret as the dispersion of the ideals of the …ctitious players
fxCkgjCjk=1 in C.

The next proposition describes the equilibrium point and the to-
tal quantity of wasted e¤ort in equilibrium under exogenous coalitional
structures.

Proposition 11 If the population is partitioned into g rival coalitions,
C1; C2:::Cg and utility is transferable, then the stable point to the simple

game is given by y¤ =

gP
k=1

"
P
i2Ck

¼i
P
i2Ck

xi

#

gP
k=1

jCkj P
i2Ck

¼i
. The average cost born by players

is given by
gP
k=1

¼C
k ½(Cj(¼Ck)Ck2C)

jMj .

Proof. We prove the proposition using the ideals and powers for
the …ctitious players corresponding to each coalition. We know from
Equation 7 that in a game with g players, the stable policy is given

by y¤ =

gP
k=1

¼kxkj

gP
k=1

¼k
. In the simple TU game, the power of the …ctitious

player is given by ¼k = jCkj P
i2Ck

¼i and his ideal is given by xk =

P
i2Ck

xi

jCkj .

Substituting these quantities into Equation 7 yields y¤ =

gP
k=1

¼C
k
xC

k

gP
k=1

¼Ck
=

gP
k=1

"
P
i2Ck

¼i
P
i2Ck

xi

#

gP
k=1

jCkj P
i2Ck

¼i
. Now letting C = fC1; C2:::Cgg denote the set of coali-

tions and making use of Equation 11, we know that the average costs

born by the …ctitious players is given by
gP
k=1

¼C
k ½(Cj(¼Ck )Ck2C)

jCj :Hence the

average costs born to players is given by
gP
k=1

¼C
k ½(Cj(¼Ck )Ck2C)

jMj .

It is worth noting that the stable point is still a weighted average of
the ideals of the players, as it was in the atomistic game. However in the
coalitional game the weight attached to an individual, h’s ideal, h 2 Ck
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is given by

P
i2Ck

¼i

gP
k=1

jCkj P
i2Ck

¼i
rather than ¼hP

i2M
¼i

; a quantity that depends on

the number of players in player h’s coalition and the strengths of each
of them.

Using the same logic we can also infer that the path to equilibrium
will be linear for myopic players and that a game of length T will have a
stable point in periods other than the last if and only if ¼k = jCkj P

i2Ck
¼i =

jChj P
i2Ch

¼i for all Ck, Ch in C.

4.3 Distributive Aspects Within Groups
In this section I have been assuming that members of a coalition bar-
gain e¢ciently. However I am silent with regards to the manner in which
they distribute bene…ts among their members. Under the assumption
of transferable utility, the distribution of bene…ts will not a¤ect the ac-
tions taken by players, only the pattern of monetary transfers between
members of a coalition. However, without making further assumptions
regarding the mechanisms used by groups, or the transfers made between
groups, we can make statements regarding the division of labor within
groups. These are summarized for TU and non-transferable utility games
that may be represented as ¸-weighted TU games in the following propo-
sition.

Proposition 12 The Assignment of Labor Within Groups. When
coalitions form, all members apply force in the same direction, and the
load assigned to each is positively related to their strength and negatively
related to their ¸-weighting in the coalitional decision rule. Furthermore
if a weighted utilitarian rule is used, with weights given by strengths of
players, then all players pull equally.

Proof. If for some arbitrary weighting vector ¸, in time t, each coali-

tion Ck chooses a set of vectors fv1t ; v2t ::::vjC
kj

t g to maximize
iP

i2Ck
¸iuit =

¡ P
i2Ck

¸i(jxi ¡ yt¡1 ¡ P
h2Ck

vht¡1 ¡ P
h62Ck

vht¡1j2)¡
P
i2Ck

¸i

¼i
jvit¡1j2 then the …rst

order condition for this problem for arbitrary dimension j and force en-
acted by player i in Ck is given by

vit¡1 =
¼i

¸i

2
4X

h2Ck
¸h(xh ¡ yt¡1 ¡

X

h2Ck
vht¡1 ¡

X

h62Ck
vht¡1)

3
5 (21)
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The vector term in square brackets in Equation 21 is constant for all
members of Ck. This is establishes the …rst part of the proposition; the
rest of the proposition follows from the fact that the scalar multiplier in
Equation 21 is given by ¼i

¸i
.

We see then that all players in a coalition pull in a single direction;
the size of the pull is positively related to the strength of the players and
negatively related to their weighting in the coalitional decision rule.

4.4 The Grand Coalition
The grand coalition is the special case of a coalitional structure where
all players may be bound by a consistent set of contracts. I now compare
outcomes under a grand coalitional structure and outcomes under the
atomistic structure, …rst in terms of the policy chosen and second in
terms of the aggregate gain in utility induced by the introduction of
institutions to enforce contracts.

If Ck is the grand coalition, then, using Equation 19,
P
i2M

vkj;t =

P
i2M

¼i

¸i

P
k2M

¸k(xk¡yt¡1)

1+
P
i2M

¼i

¸i

P
k2M

¸k
= 0 if and only if

P
k2M

¸k(xk ¡ yt¡1) = 0. That

is, a point is a stable point if and only if it is a weighted average of the
ideals, where the weight is given by the vector ¸. With transferable
utility, the stable point is the simple average. Furthermore, it is easy
to con…rm that if yt¡1 is a stable point and there is a grand coalition,
then, vij;t¡1 = 0 for all i. We note:

1. That the point chosen by the grand coalition will be the same as the
stable point in the non-cooperative game, if and only if the decision
rule used by the committee is weighted utilitarian, with weights
given by strength (a special case of which is the simple utilitarian
rule in situations where all players are of equal strength).

2. That the powers, ¼i have no a¤ect on the location of the stable
point in the TU game and a¤ect the location of the stable point in
non-transferable utility games only indirectly via the choice of ¸.

3. That if all players have the same powers, then the policy outcome
will be the same in a TU game with a grand coalitional structure
as under the atomistic structure.

I now turn to consider e¢ciency losses under the atomistic structure.
Using Equation 20 we have that the value of the grand coalition is
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V fMg = ¡jMj½(M) (22)

It is useful to compare this to the sum of the values of the individual
players under the atomic structure. Using Equation 15 we …nd that the
gain in the sum of utilities is given by:

V fMg¡
X

i2M
V i =

2
64

X

i2M

2
4xij ¡

P
i2M

¼ixi

P
i2M

¼i

3
5
2

¡ jMj½(M)

3
75+

X

i2M
¼i½(Mj¼)

(23)
If the ¼i are not uniform then this represents a double gain in the sim-

ple sum of the utility of the group: …rst a gain from having an outcome
that is at the utilitarian optimum rather than at the weighted utilitarian
optimum. This gain is represented by the …rst term in parentheses in
Equation 23. It represents the utility gain from …nancial compensation
to strong players rather than compensation through policy distortion and
is strictly positive unless all players have equal weights. The second gain
follows from the saved expenditure in equilibrium, and is represented by
the second term on the right hand side of Equation 23.

4.5 E¤ects of Coalition Structures
Coalitional structures a¤ect total costs in two distinct ways. One re-
lates to the distribution of interests within a coalition, the other to the
distribution of interests across coalitions.

Coalitions allow players to internalize the e¤ects of their actions on
other players in the same coalition. In doing so, members in a coali-
tion increase the e¤ort put into actions that are mutually bene…cial and
they reduce the e¤ort put into actions that impose negative externali-
ties on other coalition members. Whether this increases the total e¤ort
undertaken by a coalition or not will depend on the homogeneity of the
members of a coalition. If members of a coalition have common inter-
ests, they will increase the level of their activity, if they have strongly
competing interests then they will reduce the level of their activity. So
much for the distribution of interests within coalitions.

We have seen that in the game between coalitions, the aggregate level
of e¤ort applied in equilibrium depends positively on the dispersion of
the ideals of the …ctitious players representing the coalitions. Hence
more polarized coalitional structures will be related to higher aggregate
levels of violence.
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In all cases however, the power of the coalition will, we have seen,
be greater than the sum of the power of the individual members of the
coalition. A less fragmented coalitional structure may increase the level
of violence by increasing the average level of strength, but it may reduce
it by decreasing the degree of dispersion across coalitions. These e¤ects
then work in di¤erent ways and are worth disentangling.

Comparing two coalitional structures, C and D we say that C is
“coarser” than D and D is “…ner” than C when the coalitions in C
are unions of the coalitions in D. And we say “strictly coarser” or
“strictly …ner” when C 6= D. Coarser partitionings are less fragmented
in the sense that the number of bilateral bargains that can be made are
larger under a coarse partitioning than under a …ner one. fMg is the
coarsest possible partitioning in our game and hMi is the …nest possible
partitioning. We might expect then that coarser partitionings reduce
the level of violence in a polity …rstly because of the increased coverage
of institutions and secondly since we may expect coarser partitions to
reduce the level of dispersion between groups. However, the next propo-
sition shows that if a partitioning of C that is coarser than some other
partitioning D, fails to reduce the dispersion of the …ctitious players in
a game, then the aggregate level of violence is strictly higher under the
coarser coalitional structure than under the …ner structure.

Proposition 13 Coalitional structures that do not reduce agent disper-
sion increase con‡ict (as measured by the total cost of the con‡ict) rela-
tive to …ner coalitional structures. More formally, if a coalitional struc-
ture C , is strictly coarser than D but ½(Cj(¼Ck)Ck2C) =½(Dj(¼Dk)Dk2D) =

¹½ then
P
i2M

(vijC)2
¼i

>
P
i2M

(vijD)2
¼i

.

Proof. The proposition follows from the fact with C strictly coarser

than D P
Ck2C

¼C
k
=

P
Ck2C

¯̄
¯̄
¯

S
Dk2Ck

¯̄
¯̄
¯

P
Dk2Ck

P
i2Dk

¼i is strictly greater than
P
Dk2D

¼D
k
=

P
Dk2D

jDkj P
i2Dk

¼i. Hence, total costs under the coalitional structure C,

¹½
gP
k=1

¼C
k

exceed those under the atomic structure D, ¹½
P
Dk2D

¼D
k
.

The next proposition shows conditions under which the policy out-
come will be invariant to the coalitional structure. Even in these cases
however, the aggregate level of expenditure is conditional upon the coali-
tional structure.
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Proposition 14 If M is partitioned into some set of coalitions, C, such
that

P
i2Ck

¼i =
P
i2Ch

¼i for all Ch, Ck in C, (as for example if all coalitions

contain the same number of players and all players have equal strength)
then a) the stable point will be independent of the form of C but b) the
costs born in equilibrium will be sensitive to the composition of the coali-
tion.

Proof. Since y¤ =

gP
k=1

"
P
i2Ck

¼i
P
i2Ck

xi

#

gP
k=1

jCk j P
i2Ck

¼i
jCj and

P
i2Ck

¼i =
P
i2Ch

¼i for all Ch,

Ck in C, we have y¤ =

gP
k=1

"
P
i2Ck

xi

#

gP
k=1

jCkj
=

P
i2M

xi

jMj = ¹x. This establishes the

…rst part of the proposition. However, the total costs paid in equilibrium

is given by
gP
k=1

¼C
k
½(Cj(¼Ck)Ck2C). The latter part of this expression

depends on the speci…c form of the partitioning, C.

4.6 How the Theory Can Inform Empirical Work
on Ethnicity and Violence

In this section I further investigate the e¤ects of coalitional structures by
calculating a measure of the aggregate level of con‡ictual actions taken
in equilibrium for an exhaustive set of coalitional structures for a polity.
I then relate the results from this investigation to empirical work that
links ethnolinguistic fragmentation to aggregate levels of violence.

I consider a polity composed of ten identical agents, each with an
ideal point, xi, drawn from some common distribution with …nite mean
and variance and each with a common strength, ¼, normalized to unity.11

For each of the 42 possible coalition structures containing 10 players
I calculate the expected level of con‡ictual actions taken in equilib-
rium. This I treat as a proxy for the level of violence resulting from
the failure of players to contract across coalitions. The expected level
of violence in equilibrium in each coalitional structure is calculated asP
Ck2C

P
i2Ck

jCkj¼i£E
h
½(Cj(¼Ck)Ck2C)

i
where E

h
½(Cj(¼Ck)Ck2C)

i
denotes the

11Alternatively we could think of a population divided into deciles. Coalitions
then are constrained to comprise some integer number of deciles of the population.
Hence one coalition may contain 90% of the population while another contains the
remaining 10%. The symmetry of the players and the restriction that coalitions
contain population shares in increments of 10% restricts the number of strategically
di¤erent coalitional structures to just 42. These 42 coalitional structures are listed
in the Appendix.
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expected weighted variance of the means of the ideal points of the coali-
tions. A table in the Appendix reports the level of aggregate costs of
con‡ictual actions associated with each coalitional structure.

The …ndings from these calculations indicate that the most “violent”
forms of interaction are likely to occur in polities where the population
is divided into a small number of approximately equal sized groups. The
least violent structures are those where either players are divided into
many small groups or they are mostly contained in one large group. The
reason is this. When players are divided into many small groups they
fail to combine their strength in the manner required to produce high
levels of violence. When players are largely contained in just one group,
the group certainly will have much combined strength at its disposal
but the (weighted) dispersion between coalitions will generally be small.
The large group will be able to resolve much of the con‡ict in the polity
internally and cooperatively. Situations where there are small numbers
of large coalitions are the most explosive since here the strengths of the
members will be combined and there is still the possibility for consider-
able dispersion between the ideals of the coalitions.

These results can constructively engage the empirical literature that
relates ethnolinguistic fractionalization to violence. Much of this empir-
ical literature (see for a recent treatment Elbadawi and Sambanis 2000)
uses a summary statistic, “ELF” to capture the ethnolinguistic coali-
tional structure of a polity. ELF is de…ned as the probability that two
members drawn randomly from a population will not come from the
same ethnolinguistic group. It is therefore given (for large groups) by

ELF=1 ¡ P
Ck2C

h
jCkj
jMj

i2
; where jCkj is the number of individuals in coali-

tion (ethnolinguistic group) Ck, given coalitional structure C, and jMj
denotes the total population of the polity.

Empirical work that studies the e¤ects of ELF is rarely well informed
by theory. It is not always clear …rst why we would expect the measure to
have any political relevance and second, assuming ELF is relevant, what
sort of relationship we should expect it to have with levels of violence.

With regard to the …rst question, one motivation for expecting that
ELF will be related to violent action derives from the conjecture that
the ethnolinguistic structures of a country describes to some extent the
manner in which disputes may be settled within groups and between
groups. If indeed organization is more easily achieved within ethnolin-
guistic groups than across them, then the ethnolinguistic structure of
a polity corresponds well to the coalitional structures discussed in this
paper.

With regard to the second problem, there has been found to be a
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quadratic relation in the data between ELF and measures of civil war-
fare.12 The frequency of civil con‡icts is found to be at its lowest in
either very homogenous societies or in highly fractionalized societies.
Societies where violence is most likely are those with scores in a middle
range. Explanations for this quadratic relationship turn on the idea that
middling values of ELF capture societies that are “polarized”. These ex-
planations seem to accord well with the theory-based relationships that
we establish here between coalitional structures and aggregate levels of
violence.

I argue however that one reason why the empirical results seem to
accord well with the theoretical predictions of this model is that ELF
itself is frequently misinterpreted. The claim that middling values of
ELF correspond to societies in which there is “polarization” between
groups, producing rivalry, represents a double misinterpretation. First it
represents a misinterpretation of what ELF measures, since it ignores the
fact that a single value for ELF may correspond to many substantively
di¤erent coalitional structures (a point I discuss more below). Second
it represents a misinterpretation of what polarization means insofar as
it treats polarization as a function of relative group sizes rather than of
the distribution of preferences across groups.13

In fact the theory developed here does not predict a quadratic re-
lationship between ELF and aggregate levels of violence. To see this I
calculated the value of ELF that corresponds to each of the 42 coali-
tional structures considered in this section. These values are reported
in a table in the Appendix. The …gure below plots predicted levels of
violence against ELF for each of the coalitional structures considered
(each number in the graph corresponds to a datapoint, the numbers de-
note the number of coalitions contained in the coalitional structure for
the corresponding datapoint). It is worthwhile drawing attention to two
features of the graph.

12Although more recent work by Sambanis (2001) suggests that this relationship
is more likely to be linear for identity wars.

13The literature on polarization (see for example Deutsch (1971) or Esteban and
Ray (1994)) treats polarization as a measure of the degree of heterogeneity between
more or less homogenous groups where heterogeneity and homogeneity are de…ned
over some sort of a preference or interest space. Esteban and Ray construct a measure
of polarization for cases where players have preferences over a single dimension. This,
and related work is primarily intended to capture degrees of agreement or disagree-
ment across groups, not simply relative sizes of di¤erent groups. Despite Esteban
and Ray’s emphasis on the pattern of preferences, Collier and Hoeer (2001) and
Reynal-Querol (2000) both attempt to produce an Esteban and Ray type measure
using only data on group size, claiming that their measure nonetheless measures
polarization. In doing so however they e¤ectively had to assume homogeneity of
preference within groups and heterogeneity across groups.
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First, if a regression is run on the levels of violence predicted by this
model with ELF and ELF-squared on the right hand side, a concave
quadratic relationship is found to be statistically signi…cant, peaking
at a similar point to that of the relationship found in empirical work.
The theory then provides a theoretically based rationale for why we
may expect to observe a quadratic relationship between ethnolinguistic
structure and violence in the data.
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This …gure shows the mapping from ELF to the predicted sum of costs
expended to force a change to an equilibrium point for a given coalitional

structure. The points are labelled with an indicator of the number of
coalitions in the corresponding coalitional structure.

Second, although we may …nd a quadratic relationship, we can see
from the …gure that this relationship is largely spurious. In the …gure,
the predicted level of violence is not a function of ELF: for any level
of ELF there may be multiple levels of violence - depending on other
aspects of the coalitional structure. In particular, middling values of
ELF are not associated unambiguously with high levels of violence. The
reason for the seeming ambiguity lies not with an indeterminate theory
but with the measure ELF. ELF does not capture all politically rele-
vant aspects of social fragmentation that are shown in this paper to be
relevant for policy outcomes. Coalition structures that are very di¤er-
ent from a political point of view may nonetheless have the same ELF
value. As an example, a coalitional structure in which the population is
divided into two equally sized groups receives approximately the same
ELF score (.5) as a population in which one group contains 70% of the
population and another three contain 10% of the population each (.48).
These are politically very di¤erent situations. The theory here suggests
(see table in Appendix) that the former case will result in more con-
‡ictual equilibria than the latter. Yet no empirical work that attempts
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to capture coalitional structures using the ELF measure alone, or any
transformation of it, will be able to distinguish between these polities.14

The theory suggests a …x for the problem of the ambiguity of ELF.
It suggests (as evidenced by the …gure above) that a better predictor for
aggregate levels of violence than ELF and ELF-squared is given by ELF
combined with either a variable that records the number of coalitions in
each coalitional structure or a series of intercept terms for the number
of groups in each coalitional structure. Such a speci…cation should out-
perform a quadratic speci…cation.

A test for this hypothesis is presented in the …rst three columns in
Table 1 below. The table reports results from a Poisson AR(1) model
of the incidence of guerilla wars in Africa 1975-1995.15 The econometric
model is extremely simpli…ed: the number of guerilla wars is taken to
be a measure of the impacts of bargaining failure across groups. This
is assumed to be a function of the ethnolinguistic structure of the coun-
try (which in turn is assumed to correspond to coalitional structure)
conditional upon a small number of structural and economic features of
the country: size, wealth, urbanization, political institutions and growth
rates. The models suggest that

1. ELF, entered as a quadratic, produces statistically signi…cant coef-
…cients (and these describe a parabola peaking at ELF=.46). But:

2. ELF, entered linearly alongside a simple count of the number of
groups in the polity, is also statistically signi…cant and correctly
signed. And indeed such a model explains somewhat more of the
variation in the dependent variable. Finally:

3. When both a quadratic term and a count term are entered, the
quadratic term drops out while the coe¢cient on the count term
is una¤ected.

These results provide encouraging evidence for the model produced
in this paper.16 By developing a theoretically precise relationship be-
tween coalitional structure and political outcomes we have increased our

14For a more thorough and scathing account of the skeletons in ELF’s closet, see
Dan Posner (2000).

15The measure of guerilla warfare is taken from Arthur Banks’ data archive. Banks
de…nes guerilla wars as “any armed activity, sabotage, or bombings carried on by
independent bands of citizens or irregular forces and aimed at the overthrow of the
present regime.” The list of countries that experienced one or more incidents of
guerilla warfare per year is given in the …nal Appendix.

16We note however that while the predicted e¤ects of the number of groups and
the fractionalization of the polity are qualitatively consistent with the results from
our model, the relative magnitudes of the e¤ects di¤er somewhat from the formal
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understanding of regularities already observed in African data. What is
more, the theory has led us to alter the functional form used to study
the data and improved our ability to explain observed variations.

Table I: Explaining the Incidence of Guerilla Wars in
Africa (1975-1995)

Model: I II III

Lag 0.46*** 0.47*** 0.46***
(17.04) (17.54) (17.31)

ELF 3.60*** 1.11*** 2.22*
(2.9) (2.54) (1.63)

ELF2 -3.92*** -1.41
(-3.05) (-0.87)

Number of Ethnic Groups -0.08*** -0.07***
(-4.00) (-2.73)

Executive Scales -0.38*** -0.30*** -0.31***
(-3.88) (-3.06) (-3.14)

Land Area 1.05E-08*** 1.28E-08*** 1.24E-08***
(9.47) (10.19) (9.41)

Urbanization -0.06*** -0.06*** -0.06***
(-5.6) (-5.5) (-5.48)

Per Capita GDP -3.78E-04* -3.03E-04 -3.34E-04
(-1.64) (-1.36) (-1.48)

Lag of GDP Growth Rate -0.01 -0.01 -0.01
(-1.2) (-1.08) (-1.12)

Constant -0.76** -0.67** -0.77**
(-2.01) (-1.96) (-2.12)

Number of Obs 831 831 831
R2 0.3604 0.3772 0.3745
Adjusted R2 0.3542 0.3712 0.3677

Notes: Dependent variables is the number of guerilla wars per country per year.
Model is a Poisson AR(1), as described in Katsouyanni et al (1996) and Schwartz et
al (1996). t-statistics are in parenthesis and asterisks denote signi…cance at the 99%
(***), 95% (**) and 90% (*) levels. Fitted values, variable de…nitions, sources and
summary statistics are given in the Appendices.

predictions. The econometric model suggests that countries with many equal sized
groups engage in more con‡ictual action than polities with just two equal sized
groups. To compare the relative e¤ects of fragmentation of groups and number of
groups, see the …gure of …tted values printed in the Appendix.
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4.7 Summary of Results from the Study of Coali-
tional Structures and an Example Illustrating
Some of the Results

Summary of Results

Little Leviathans: If coalitions can negotiate e¤ectively in a TU
game, then the group of actors in a coalition acts as if it were a single
actor whose ideal point is the simple average of the ideals of the members
of the coalition and whose strength is the sum of the strengths of the
members, multiplied by the number of members in a coalition.

Equilibrium. The equilibrium in the coalitional stage game is anal-
ogous to the equilibrium in the atomistic stage game: it is given by the
weighted average of the ideals of the …ctitious players. This is itself a
weighted average of the ideals of individual players where the weights
are a function of the size of the coalitions of which the players are a part
and of the strengths of the other members of their coalition.

Uni…ed Actions. All members of a coalition apply force in the
same direction. The magnitude of force applied by each member of a
coalition is increasing in his strength and decreasing in his weighting in
the objective function of the coalition.

E¢ciency Gains. In the TU game, equilibrium in the grand coali-
tional structure improves upon equilibrium under the atomistic structure
in two distinct ways. First, the location of the stable point in the grand
coalitional game (the unweighted utilitarian maximum) coupled with ap-
propriate transfers Pareto dominates the stable point in the atomistic
game (the weighted maximum without transfers). Second, in equilib-
rium the grand coalition expends no energy in attempting to alter the
status quo.

Aggregate Levels of Violence in Equilibrium. The aggregate
level of wasted e¤orts to force a change in the status quo is a function of
the dispersion of the simple averages of the ideals of the players in the
set of coalitions, and the sum of the strengths of the coalitions. Polar-
ized coalitional structures that increase the dispersion across coalitions
therefore increase aggregate levels of violence ceteris paribus. Coarser
partitions that fail to reduce dispersion result in higher levels of violence,
even though more bilateral bargains may be enforced relative to a …ner
partitioning.

I end this section with an example. This example illustrates key
results from this section in a game with four players that may form into
polarized or non-polarized coalitional structures.
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Example

Consider a game with four players (a; b; c; d) of equal strength, ¼a =
¼b = ¼c = ¼d = 1

4
, and ideals (xa; xb; xc; xd) with xa = xb and xc =

xd. Assume the group divides into two coalitions of two members each.
Assume …rst that a and b form coalition C1 while c and d form coalition
C2. In this case C = ffa; bg; fc; dgg is a polarized coalitional structure.

In this case, the equilibrium policy is given by (xC
1
+xC

2
)

2
=
( x
a+xb

2
+ xc+xd

2
)

2
=

xa+xc

2
and the total costs paid are give by:

gP
k=1

¼C
k
½(C)Ck2C. Now recall

that ½(C) =
nP
j=1

P
k2C

"
xC

k

j ¡
xC1j +xC2j

2

#2

jCj and so for this coalitional structure

½(C) =
nP
j=1

"
xaj+x

b
j

2
¡ xaj+x

c
j

2

#2
+

"
xcj+x

d
j

2
¡ xaj+x

c
j

2

#2

2
=

nP
j=1

h
xaj¡xcj
2

i2
: Total costs will

then be given by 2
nP
j=1

£
xaj ¡ xcj

¤2
. In essence, the groups will form into

two uni…ed coalitions each representable by a …ctitious actor located at
the players’ shared ideal. However, if instead a and c formed coalition
D1 while b and d form coalition D2; that is, D = ffa; cg; fb; dgg: D is a
non-polarized coalitional structure (there are “cross-cutting cleavages”).

In this case the equilibrium policy would again be given by (xD
1
+xD

2
)

2

=
( x
a+xc

2
+ xb+xd

2
)

2
= xa+xc

2
. This time, however, since the …ctional players

share the same point, ½(D) = 0 for this game and hence total costs
expended in equilibrium would be zero. This example illustrates the
principal that if coalitions can make internal decisions costlessly, then
players will do better in equilibrium if coalitions form among unlike types
rather than, as we may expect, among likes. In this context cooperation
between internally fragmented groups is preferable to con‡ict between
homogenous groups. Note also that in this example ½(C) =½(M): The
coarser coalition C is as dispersed as M. The total expenditure at the

equilibrium point in the atomistic game is given then by
nP
j=1

£
xaj ¡ xcj

¤2

half that spent in the polarized game. In this case the fact that players in
C1 and C2 internalize the e¤ects of their actions upon the other member
of their coalition results in them behaving more aggressively vis-à-vis
members of the other coalition
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6 Appendices

6.1 Propositions and Proofs for the Repeat Play
Game with Sophisticated Players

Lemma 1 (stated in text) If a game with quadratic subutility functions
and costs is iterated T times, where T is arbitrarily large, and all players
are of equal strength, then the sum of all players’ optimal actions,

P
i2M

vi¤t ,

in each period of play, t = 1; 2; :::; T , is given by a linear equation of the
form:

P
i2M

vi¤t = (¹x¡ yt¡1)kt, where 0 < kt < 1.

Proof. It follows from Lemma 2 and by induction that if Equations
24 and 25 (below) are satis…ed in a game of length 1 then they hold for
a game of arbitrary length. It is easy to verify that these conditions
do hold in a game of length 1 or 2. Solving a game of length 2 the
equations are satis…ed by: kT = m¼

1+m¼
, ®T = m¼2

1+m¼
, ¯T =

¼
1+m¼

, kT¡1 =
m¼(1+m¼)2+m¼(1+¼)±
(1+m¼)3+m¼(1+¼)±

, ®T¡1 = ¼
h
± (1+¼)
(1+m¼)

+ m¼(1+m¼)2+(m¼¡1)(1+¼)±
(1+m¼)3+m¼(1+¼)±

i
, and

¯T¡1 =
¼(1+m¼)2+¼(1+¼)±
(1+m¼)3+m¼(1+¼)±

Lemma 2. If a game with quadratic subutility functions and costs
is iterated for T periods (say from period 1 to period T ), if all players
are of equal strength, and if the following three conditions hold:

(1) That for t = 1; 2:::; T , a player’s optimal action vi¤t is
given by some linear equation of the form:

vi¤t = ¡®t¹x¡ ¯tyt¡1 + (®t + ¯t)xi (24)

where ®t and ¯t are period-speci…c scalars and are constant
over all players.

(2) That for t = 1; 2:::; T , kt < 1 .

(3) That for t = 1; 2:::; T , the sum of all players’ optimal
actions

P
i2M

vi¤t is given by a linear equation of the form:

X

i2M
vi¤t = (¹x¡ yt¡1)kt (25)

where kt is a period-speci…c scalar, constant over all players.

Then these three conditions will also hold for a game iterated
for T + 1 periods for t = 0; 1; :::; T .
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Proof. Before proceeding, note that since y1 = y0 +
P
h2M

vh¤1 Equa-

tion 25 tells us that we may write y1 = k1¹x + (1 ¡ k1)y0 and y2 =
k2¹x + (1 ¡ k2)y1 = [1¡ (1¡ k1)(1¡ k2)] ¹x+ [(1¡ k1)(1¡ k2)] y0. Pro-
ceeding in this manner and with repeated substitution for y1, y2::: allows
us to write more generally for t > 0:

yt = [1¡
tY

r=1

(1¡ kr)]¹x+ [
tY

r=1

(1¡ kr)]y0

Assume the conditions given in Equations 24 and 25 hold for a game
of length T . Now consider a game of length T + 1. In the …rst period
of play of this game, each player maximizes, V i0 ;given by:

V i0 = ¡jxi ¡ y¡1 ¡
X

k2M
vk0 j2 ¡ jvi0j2

¼
¡

TX

t=1

±tjxi ¡ ytj2 ¡
TX

t=1

±t
jvtj2
¼

Players using backwards induction, use Equations 24 and 25 to sub-
stitute for yt and vt. Using the fact that y0 = y¡1 +

P
k2M

vk0 we can now

write the entire expression in terms of …xed quantities (including y¡1)
and actions taken in time 0.
V i0 = ¡jxi ¡ y¡1 ¡ P

k2M
vk0 j2 ¡ jvi0j2

¼

¡
TP
t=1

±tjxi ¡ [1¡
tQ

r=1

(1¡ kr)]¹x¡ [
tQ
r=1

(1¡ kr)][y¡1 +
P
k2M

vk0 ]j2

¡
TP
t=1

±t
j¡®t¹x¡¯t[[1¡

t¡1Q
r=1

(1¡kr)]¹x+[
t¡1Q
r=1

(1¡kr)][y¡1+
P

h2M
vh0 ]]+(®t+¯t)x

ij2

¼

First order conditions for dimension j are given by:
vi0;j = ¼(x

i
j ¡ y¡1;j ¡ P

k2M
vkj;0)

+
TP
t=1

±t¼
tQ

r=1

(1¡kr)
�
xi ¡ [1¡

tQ
r=1

(1¡ kr)]¹x¡ [
tQ
r=1

(1¡ kr)][y¡1 +
P
k2M

vk0 ]

¸

+
TP
t=1

±t
t¡1Q
r=1

(1¡kr)[¡®t¹x¡¯t[[1¡
t¡1Q
r=1

(1¡kr)]¹x+[
t¡1Q
r=1

(1¡kr)][y¡1+
P
h2M

vh0 ]] + (®t + ¯t)x
i]

Due to the excessive cumber of this expression it is useful now to
de…ne some constants as follows

µ1 ´
TP
t=1

±t¼[
tQ
r=1

(1¡ kr)]

µ2 ´
TP
t=1

±t¼[
tQ
r=1

(1¡ kr)][1¡
tQ
r=1

(1¡ kr)]
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µ3 ´
TP
t=1

±t¼[
tQ
r=1

(1¡ kr)][
tQ

r=1

(1¡ kr)] = µ1 ¡ µ2

µ4 ´
TP
t=1

±t[
t¡1Q
r=1

(1¡ kr)]®t

µ5 ´
TP
t=1

±t[
t¡1Q
r=1

(1¡ kr)]¯t

µ6 ´
TP
t=1

±t[
t¡1Q
r=1

(1¡ kr)][[1¡
t¡1Q
r=1

(1¡ kr)]¯t

µ7 ´
TP
t=1

±t[
t¡1Q
r=1

(1¡ kr)][
t¡1Q
r=1

(1¡ kr)]¯t = µ5 ¡ µ6
We may now write the …rst order conditions more simply, in vector

form as:

vi0 = (¼+µ1+µ4+µ5)x
i¡(µ2+µ4+µ6)¹xj¡(¼+µ3+µ7)[y¡1+

X

k2M
vk0 ] (26)

Now, summing over the elements of M and replacing
P
k2M

xk with

m¹x we have:

X

k2M
vk0 = m[¼ + µ3 + µ7][¹x¡ y¡1 ¡

X

k2M
vk0 ] (27)

We may then solve for
P
k2M

vk0 :

X

k2M
vk0 =

m[¼ + µ3 + µ7]

1 +m[¼ + µ3 + µ7]
[¹x¡ y¡1] (28)

De…ning k0 =
m[¼+µ3+µ7]
1+m[¼+µ3+µ7]

, Equation 28 establishes the …rst part of
the claim. Furthermore, if 0 < kt < 1 for all t 2 f1; 2; :::Tg then µ3
and µ7 are both positive and so 0 < k0 < 1. This establishes the second
part of the proposition. We now return to consider vi0. Substituting forP
k2M

vk0 from Equation 28 in Equation 26, we have:

vi0 = (¼+µ1+µ4+µ5)x
i¡(µ2+µ4+µ6)¹xj¡(¼+µ3+µ7)[y¡1+k0[¹x¡y¡1]]

(29)
De…ning ®0 = (µ2 + µ4 + µ6 + (¼ + µ3 + µ7)k0) and ¯0 = (¼ + µ3 +

µ7)(1¡k0) and noting that ®0+¯0 = (¼+µ1+µ4+µ5) we may rearrange
Equation 29 and substitute these terms to write:

vi0 = ¡®0¹x¡ ¯0y0 + (®0 + ¯0)xi (30)

Equation 30 establishes the …nal part of the claim.
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6.2 Table Relating Ethnolinguistic Fractionalization
to Violence for 42 Coalitional Structures

The table printed in this Appendix shows the exhaustive set of 42 dis-
tinct coalitional structures for a game with ten players, each of identical
strength. Each coalitional structure is represented as a particular parti-
tioning of the population. For example, the partitioning [¢ ¢ ¢ ¢ j ¢ ¢j ¢ j ¢ j ¢ j¢]
represents a world in which there is one group containing 40% of the
population, one containing 20% and four more containing 10% each.
For each coalitional structure, the table reports a measure of fractional-

ization “ELF”, given (for large groups) by ELF=1¡ P
Ck2C

h
jCkj
jMj

i2
; where

jCkj is the number of individuals in coalition Ck from coalitional struc-
ture C, and jMj denotes the total population of the polity. The table
also reports the number of coalitions in the coalitional structure. Fi-
nally it reports the expected level of violence resulting in equilibrium
from each coalitional structure. This is calculated as

P
Ck2C

P
i2Ck

jCkj¼i £

E
h
½(Cj(¼Ck)Ck2C)

i
where E

h
½(Cj(¼Ck)Ck2C)

i
denotes the expected (weighted)

variance of the means of the ideal points of the coalitions when all mem-
bers are independently drawn from some distribution with …nite mean
and variance.
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Table II: Coalitional Structure and Conflict

Coa litional ELF # Violence Coalitional ELF # V io lence

Structure Structure

¢ ¢ ¢ ¢ ¢j ¢ ¢ ¢ ¢¢ .5 2 .199 ¢ ¢ ¢ ¢ j ¢ ¢ ¢ j ¢ j ¢ j¢ .72 5 .11

¢ ¢ ¢ ¢ ¢ ¢ j ¢ ¢ ¢ ¢ .48 2 .187 ¢ ¢ ¢j ¢ ¢j ¢ ¢j ¢ j ¢ j¢ .8 6 .106

¢ ¢ ¢ ¢ j ¢ ¢ ¢ j ¢ ¢¢ .66 3 .185 ¢ ¢ ¢j ¢ ¢ ¢ j ¢ j ¢ j ¢ j¢ .78 6 .102

¢ ¢ ¢ ¢ j ¢ ¢ ¢ ¢j ¢ ¢ .64 3 .176 ¢ ¢ j ¢ ¢j ¢ ¢j ¢ j ¢ j ¢ j¢ .84 7 .1

¢ ¢ ¢ ¢ ¢j ¢ ¢ ¢ j ¢ ¢ .62 3 .159 ¢ ¢ ¢ ¢ ¢ ¢ ¢j ¢ ¢j¢ .46 3 .098

¢ ¢ ¢ ¢ ¢j ¢ ¢ ¢ ¢j¢ .58 3 .155 ¢ ¢ ¢ ¢ j ¢ ¢j ¢ j ¢ j ¢ j¢ .76 6 .096

¢ ¢ ¢ ¢ ¢ ¢ ¢j ¢ ¢¢ .42 2 .153 ¢ ¢ ¢ ¢ ¢j ¢ ¢j ¢ j ¢ j¢ .68 5 .096

¢ ¢ ¢j ¢ ¢ ¢ j ¢ ¢j ¢ ¢ .74 4 .153 ¢ ¢ ¢ ¢ ¢ ¢ j ¢ ¢j ¢ j¢ .58 4 .096

¢ ¢ ¢j ¢ ¢ ¢ j ¢ ¢ ¢ j¢ .72 4 .147 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ j ¢ ¢ .32 2 .096

¢ ¢ ¢ ¢ j ¢ ¢j ¢ ¢j ¢ ¢ .72 4 .143 ¢ ¢ ¢j ¢ ¢j ¢ j ¢ j ¢ j ¢ j¢ .82 7 .092

¢ ¢ ¢ ¢ j ¢ ¢ ¢ j ¢ ¢j¢ .7 4 .137 ¢ ¢ j ¢ ¢j ¢ j ¢ j ¢ j ¢ j ¢ j¢ .86 8 .089

¢ ¢ ¢ ¢ ¢ ¢ j ¢ ¢j ¢ ¢ .54 3 .135 ¢ ¢ ¢j ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j¢ .84 8 .082

¢ ¢ j ¢ ¢j ¢ ¢j ¢ ¢j ¢ ¢ .8 5 .133 ¢ ¢ ¢ ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j¢ .78 7 .082

¢ ¢ ¢ ¢ ¢ ¢ j ¢ ¢ ¢ j¢ .56 3 .132 ¢ ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j¢ .88 9 .08

¢ ¢ ¢j ¢ ¢j ¢ ¢j ¢ ¢j¢ .78 5 .128 ¢ ¢ ¢ ¢ ¢j ¢ j ¢ j ¢ j ¢ j¢ .7 6 .077

¢ ¢ ¢ ¢ j ¢ ¢ ¢ ¢j ¢ j¢ .66 4 .127 ¢j ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j ¢ j¢ .9 10 .085

¢ ¢ ¢j ¢ ¢ ¢ j ¢ ¢j ¢ j¢ .76 5 .122 ¢ ¢ ¢ ¢ ¢ ¢ j ¢ j ¢ j ¢ j¢ .6 5 .075

¢ ¢ ¢ ¢ ¢j ¢ ¢j ¢ ¢j¢ .66 4 .12 ¢ ¢ ¢ ¢ ¢ ¢ ¢j ¢ j ¢ j¢ .48 .4 .07

¢ ¢ ¢ ¢ ¢j ¢ ¢ ¢ j ¢ j¢ .64 4 .12 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ j ¢ j¢ .34 3 .062

¢ ¢ ¢ ¢ j ¢ ¢j ¢ ¢j ¢ j¢ .74 4 .153 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢j¢ .18 2 .045

¢ ¢ j ¢ ¢j ¢ ¢j ¢ ¢j ¢ j¢ .82 6 .112 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢¢ 0 1 0
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6.3 Fitted Values for Econometric Models 1 and 2.
The two …gures in this appendix show …tted values for Poisson Models
I and II, reported in Table 1 in the text. The …tted values show the
expected number of guerilla wars in a country as a function of the eth-
nolinguistic structure of the country, all other control variables held at
their means.

Model I (Quadratic)
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Model II (Linear with Intercept)
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This …gure reports the …tted values for the expected number of guerilla wars (on
the vertical axis) as a function of the level of ELF (on the horizontal axis) and the

number of ethnic groups in a country (labels on the datapoints).
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6.4 Variables Used to Produce Table 1
Description and Source

Variable Description Source
Guerilla Wars Any armed activity,

sabotage, or bombings
carried on by indepen-
dent bands of citizens
or irregular forces and
aimed at the overthrow
of the present regime.

Banks (2000)

ELF Ethnolinguistic Frac-
tionalization

Soviet Union (1964)

Number of Ethnic
Groups

Number of Ethnic
Groups per Country

Soviet Union (1964)

Land Area Land Area in Hectares World Bank(2000)
Urbanization % of Population Living

in Urban Areas
World Bank. (2000)

GDP per capita Real per capita PPP
GDP chain index

Summers and Heston
(1996)

Lag of GDP per
capita growth

Summers and Heston
(1996)

Executive Scales Describes the compet-
itiveness of the elec-
toral system.

Ferree and Singh
(2000)

Summary Statistics

Variable Mean s.d. Min. Max.
Guerilla Wars .16 .46 0 5
ELF .62 .28 0 .92
Number of Groups 9.33 5.51 1 26
Land Area 4.8e+07 5.6e+07 45000 2.4e+08
Urbanization 23.3 13.5 2 82
GDP per capita 1101 892 261 6965
Lag of GDP per capita growth .58 7.93 -64.24 51.30
Executive Scales 3.3 1.5 1 6
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Details on the Dependent Variable

According to the Banks dataset, the following country years expe-
rienced one or more incidents of guerilla warfare: Angola 75-79, 81-90,
93-95; Burundi 72, 73; Chad 70-72, 74, 78, 80, 82-89; Ivory Coast 70;
Djibouti 93,94, 95; Ethiopia 70-71, 74-78, 81-92; Guinea 70; Lesotho 70,
81-83; Liberia 91-95; Madagascar 91; Mauritania 76-79; Mozambique
75-85, 88-91; Namibia 81-85, 87-88; Namibia 82-85, 87-88; Nigeria 70,
94; Rwanda 91; Sierra Leone 95; Somalia 81-82, 88-95; Sudan 70-72,
84-86, 89-95; Swaziland 84-85; Uganda 72, 81-83, 85-89, 91; Zaire, 70,
77, 88-89 ; Zimbabwe 70, 72-81, 83-85.
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